Time: 3 Hours

Note: (1) Question No.1 is compulsory.

[Total Marks: 80]

		any three out of remaining question.	
		e suitable data if necessary. s to the right indicate full marks.	
(4) 1	rigures	s to the right indicate run marks.	370,0
Q.1	Atte	empt any Four	
٧.1	(a)	Derive Poisson's and Laplace equation.	05
	(b)	Explain boundary conditions of E and H fields for two media.	05
	(c)	Define Skin Depth, and calculate it for a wave travelling in a conductor	05
	(0)	$(\sigma = 3.5 \times 10^7 \text{ S/m})$, with a frequency of 100Mhz, $\epsilon_r = 1.2$, $\mu_r = 1$	3,33
	(d)	Explain the radiation resistance, directivity, Beam-width and directive	05
	(u)	gain of the antenna.	The state of
	(e)	What is polarization? Explain all the types of polarization.	05
Q.2	(a)	Derive Maxwell's equations in integral and point form for static field.	10
Q. <u>=</u>	(b)	State and Explain Poynting vector using modified Ampere's law, derive	~ 10
	(6)	the pointing theorem and describe the significance of each of its terms.	By =0
Q.3	(a)	Find the directive gain and directivity if $U(\theta, \phi) = 10\sin\theta\sin\theta$,	05
	(4)	$0 < \theta < \pi$, $0 < \phi < 2\pi$;	•
	(b)	Derive an expression for reflection and transmission coefficient for	05
	(6)	normal incidence in case of reflection from perfect dielectric.	02
	(c)	Using finite difference method calculate the potential at node 1 and 2	10
	(0)	shown in the figure	
		30V	
		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		20V 3	
		ON CONTRACTOR OV	
0.4	(20)		10
Q.4	(a)	Drive the expression for radiation resistance in far field region of an	10
Å		Infinitesimal dipole antenna.	Ω5
N. C.	(D)	Compare different methods used for computational electromagnetic.	05
	(0)	Explain the Mechanism of ionespheric propagation with its structure	05
5000	(c)	Explain the Mechanism of ionospheric propagation with its structure.	US
Q.5	(9)	What is UPW? Derive wave equation and its solution for free space.	10
		what is of w. Derive wave equation and its solution for free space.	10
	(b)	Classify and Explain different types of wave Propagation and define the	10
N. K. B.	7.50	terms Critical frequency, Virtual height, Maximum unstable frequency	
07777		and skip distance	
Q.6	(a)	A transmission line having $Z_0=50\Omega$, length d= 0.15 λ , is terminated by a	05
2,20		load of $Z_L = (25 - j30)\Omega$. Calculate Γ_0 , S and $Z_{in}(d)$.	0.0
322	(b)	Derive an expression for transmission line equation.	05
	(c)	Calculate the SWR, reflection coefficient and admittance (Y) and Smith	10
		chart both for transmission line having $Z_0=50 \Omega$, Load impedance $Z_L=$	10
3,3000	3000	$100+j150\Omega$.	
433	000		