**Total Marks: 80** (3 Hrs)

**NOTE:** 

- 1) Question number 1 is compulsory.
- 2) Attempt any three questions from the remaining five questions.
- 3) Assume suitable data wherever necessary.

Q1(a) Determine the values of power and energy for the following signals:

(20)

i) 
$$x_1(t) = e^{j(2t + \pi/4)}$$

ii) 
$$x_2(n) = (1/2)^n u(n)$$

(b) Check whether the given systems are time-variant, linear and causal:

i) 
$$y(t) = x(t) + dx(t)/dt$$

(c) Check for periodicity of the given signals .Also determine the fundamental period.

i) 
$$x(t)= 2 \cos (10t+1) - \sin (4t-1)$$
 ii)  $x(n) = e^{j7\pi n}$ 

ii) 
$$x(n) = e^{j7\pi i}$$

(d) Find the correlation of the two sequences,  $x(n) = \{1,2,3\}$  and  $y(n) = \{2,4,1\}$ .

Q2(a) Determine x(n) for all possible ROC conditions.

$$X(z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}}$$

(b) Perform convolution of the following causal signals (10)

(i) 
$$x_1(t) = e^{-2t}$$
.  $u(t)$ ,  $x_2(t) = e^{-5t}$ .  $u(t)$ 

(ii) 
$$x_1(t) = t u(t)$$
,  $x_2(t) = e^{-5t} u(t)$ 

Q3 (a) A Discrete time LTI system is specified by

$$y(n) = -7y(n-1) - 12y(n-2) + 4x(n-1) - 2x(n)$$

$$y(-1) = -2 y(-2) = 3$$
(10)

Determine (a) zero input response

- (b) zero state response if  $x(n) = (6)^n u(n)$
- (c) Total response of the system
- (b). A continuous time LTI system for which the input x(t) and output y(t) are related by

the differential equation:

(10)

$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t) ;$$

(i) Determine H(s) as a ratio of two polynomials in s. Sketch the pole-zero pattern of H(s).

58994

## Paper / Subject Code: 30704 / SIGNALS & SYSTEMS

- (ii) Determine h(t) for each of the following cases:
  - 1. The system is stable.
  - 2. The system is causal.
  - 3. The system is neither stable nor causal.
- Q4 (a) Using Laplace transform determine the complete response of the system described by the equation, (10)

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt};$$

y(0) = 0;  $dy(t)/dt |_{t=0} = 1$ , for the input  $x(t) = e^{-2t}u(t)$ .

(b) Determine the Fourier transform of the given continuous time domain signal given by

$$x(t) = e^{-at} \cos \Omega_0 u(t)$$
 (5)

- (c) Define ESD and PSD. What is the relation of ESD and PSD with autocorrelation? (5)
- Q5 (a) Determine the Fourier series of the given signal: (10)



- (b) Prove time shifting property of Z transform.
- (c) Determine the impulse response for the cascade of two LTI systems having impulse responses  $h_1(n) = (1/2)^n u(n)$  and  $h_2(n) = (1/4)^n u(n)$ . (5)

(5)

Q6(a) Compute the Fourier transform and sketch the magnitude and phase function of causal

sequence given by : 
$$x(n) = 1/3$$
;  $0 \le n \le 2$  (10)

= 0; else

(b) State and prove Initial and final value theorem. Determine the initial and final (10)

values of x(t) if its Laplace transform is given by :  $X(s) = \frac{10 (2s+3)}{s(s^2+2s+5)}$ 

\*\*\*\*\*\*\*\*\*\*\*\*

58994