Paper / Subject Code: 30705 / DIGITAL COMMUNICATION

Q. P. Code: 37492

Time: 3 Hrs Total Marks: 80

Instructions:

- 1) Question number 1 is compulsory.
- 2) Answer any three questions from remaining question
- 3) Assume Suitable data if required but justify the same.
- Q1. Answer any four questions
 - 1) With neat block diagram explain Digital Communication System.
 - 2) Differentiate between MSK and Offset QPSK.
 - 3) State and Explain Shannon's theorem for channel capacity.
 - 4) Explain the terms code redundancy, code rate, code efficiency and Hamming Bound.
 - 5) Differentiate between Frequency hopped spread spectrum(FHSS) and Direct sequence spread spectrum.
- Q2. 1) Explain with neat diagram, transmitter. Receiver, waveforms, the BPSK modulation System.
 - 2) A discrete memoryless channel has an alphabets of five symbols, with the probabilities as
 As given below

S1	S2	\$3	\$4	S5
0.55	0.15	0.15	0.1	0.05

Construct the Huffman code and find entropy and average code word length of the code.

Also calculate code redundancy and efficiency of the code.

Q3. 1) A (7,4) linear block code has following generator matrix

G= 110	1	0	0	0
011	0	1	0	0
111	0	0	1	0
101	0	0	0	1

- i) Write parity check matrix
- ii) Generate all the code word
- iii) Generate the decoding table for the single error pattern.
- 2) Explain DPSK system with respect to transmitter. Receiver

Q. P. Code: 37492

- Q4. 1) Explain with neat diagram the working of Integrate and Dump receiver. Derive the expression for probability of error.
 - 2) Explain with neat diagram frequency hopping spread spectrum, FH-MFSK and explain slow hopping and fast hopping.
- Q5. 1) What is Eye pattern. Explain the parameters observed from it with an illustration.
 - 2) Draw signal space diagram for 16 QAM system and compare probability of occurrence of error in it with QPSK system.
- Q6. Write short notes on followings(any two)
 - 1) Nyquist criteria for distortion less baseband transmission
 - 2) Convolution codes
 - 3) Direct sequence code division multiple array(DS-CDMA)
 - 4) Probability Models