(3 hours) [Marks:80]

10

- NOTE: 1) Question No. 1 is compulsory.
 - 2) Out of remaining questions, attempt any 3 questions.
 - 3) In all 4 questions to be attempted.
 - 4) All questions carry equal marks.
 - 5) Figures in brackets on the right hand side indicate full marks.
 - 6) Assume Suitable data if necessary

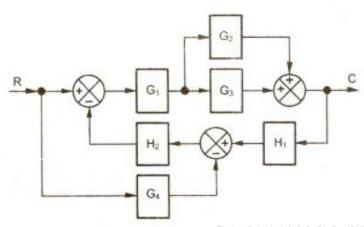
Q1 Answer any 5

- i) How do you compare open loop and closed loop system?
- ii) What are position, velocity and acceleration error coefficients?
- iii) What is importance of state space representation?
- iv) Write expression for rise time, peak time, maximum peak overshoot and settling time of second order under damped system.
- v) How to find breakaway point in root locus
- vi) How do you define stable system?
- vii) What are properties of state transition matrix?
- Q2a) Check whether the following systems are stable using Routh's stability criterion 10
 - i) $3s^4 + 10s^3 + 5s^2 + 2$
 - ii) $s^4+4s^3+6s^2+4s-5$

2b) Find root locus for the transfer function
$$G(s) = \frac{2}{s(s+2)(s+5)}$$

3a) Find the state equation and output equation for the transfer function 10

$$G(s) = \frac{2s+1}{s^2 + 7s + 9}$$


3b) Check the controllability and observability of the following system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Paper / Subject Code: 39304 / PRINCIPLES OF CONTROL SYSTEMS

4a) Reduce the following Block diagram using Block reduction technique

- 4b) Draw Bode plot for the function $G(s) = \frac{40(s+2)}{s(s+10)(s+400)}$ and find gain margin and phase margin
- 5a) Explain signal flow graph representation and its reduction technique using Masons gain formula

5b) Draw polar plots for

$$i)\frac{1}{s+10}$$

$$ii)\frac{1}{s^2}$$

$$iii)\frac{100}{s^3}$$

$$(iv)\frac{10}{s}$$

6. Write short notes on any 4

20

10

10

10

- i. Nyquist plots
- ii. Lead and lag compensator
- iii. Correlation between time and frequency response
- iv. Gain and phase margin
- v. Type and order of system

78505