
Time: 3 Hours Marks: 80

- 1. Attempt Any Four Questions
- 2. Question No. 1 is Compulsory
- 3. Marks to the right indicate full marks
- 4. Assume suitable data wherever necessary.

Q1. Solve Any Four

- a) Draw block diagram and obtain transfer function of a simple closed loop system, with a forward path gain as G(s) and feedback path gain as H(s)
- b) In complex "s" plane show pole locations for under damped, critically damped and over damped control systems.
- c) What are the effects of feedback on a system?
- d) Explain Importance of mathematical modeling.
- e) What is state transition matrix? State the properties of state transition matrix.
- 2a) Determine the transfer function C/R of a control system shown by following block diagram

- 2b) Draw a Signal flow graph of the system in 2 a) and Obtain overall transfer function using Mason's Gain Formula
- 3a) Define Controllability and Observability. Check the Controllability and Observability of the following State Space Model.

$$\dot{x} = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$
:

$$y = [0 \quad 1]x$$

Paper / Subject Code: 40906 / Linear Control Systems

3b) For the given state variable model, obtain transfer function. 10

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
:

$$y = [1 \ 0]x$$

Sketch Bode plot for a system whose open loop transfer function is

10

$$G(s) = \frac{0.354 (s+1)(1+0.05 s)}{s(1+0.025 s)}$$

Sketch root locus for a unity feedback system, whose open loop transfer function is given as

10

$$G(s) = \frac{K}{s(s+2)(s+4)}$$

The open loop transfer function of a unity feedback system is given as

10

$$G(s) = \frac{K}{s(s^2 + 4s + 13)}$$

Find the range of K for stability using Routh's stability criterion.

Write the expression for a unit step response for a general second order system. Hence derive the expression for time to peak overshoot.

10

A unity feedback system has open loop transfer function as

10

$$G(s) = \frac{40(s+2)}{s(s+1)(s+4)},$$

Determine i) Type of a system, ii) Static error coefficients and iii) steady state error for ramp input with magnitude of 4.

6b) Write short note on any one of the following:

10

- (i) Advances in Control Systems.
- (ii) PID Controller