(3 Hours) [Total Marks: 80]

Please check whether you have got the right question paper.

- N.B.: 1) Question No.1 is compulsory.
 - 2) Attempt any three questions from remaining.
 - 3) All questions carry equal marks.
 - 4) Assume suitable data wherever necessary.
- Q.1 Attempt **any four (04)** of the following:

20

- (a) Explain high frequency equivalent circuit of bipolar junction transistor (BJT).
- (b) Write short note on the Cascode amplifier configuration.
- (c) What are the advantages & disadvantages of negative feedback?
- (d) State & explain the Barkhausen's criterion.
- (e) Describe what is cross-over distortion with a neat sketch.
- (f) With neat sketch describe the V-I characteristics of DIAC.
- Q.2 (a) Determine the lower & upper cut-off frequency (f_L&f_H) for the single stage common collector (CC) BJT amplifier asshown in Fig. 1 below.

Fig. 1 – Common Collector (CC) BJT Amplifier for Q.2 (a)

Q.2 (b) Explain the high frequency response of CS – JFET amplifier with proper equations.

Discuss the effects of various parasitic (inter-electrode & wiring) capacitances.

10

- Q.3 (a) Draw Class A transformer coupled amplifier & load line, derive the expressions for the maximum overall operating efficiency $\eta_{c(max)}$ & maximum collector conversion efficiency $\eta_{c(max)}$.
- Q.3 (b) Explain Class B push-pull amplifier with neat labeled diagram & derive the expressions for the maximum overall operating efficiency $\eta_{o(max)}$ & maximum collector conversion efficiency $\eta_{c(max)}$.

10

77597 Page 1 of 3

Q.4 (a) For the E – MOSFET differential amplifier as shown in the Fig. 2:-

- (i) Determine the DC operating point (Q Point)
- (ii) Derive & calculate the differential mode gain (A_d)
- (iii) Derive & calculate the common mode gain (A_c)
- (iv) Calculate the common mode rejection ratio (CMRR)

Fig. 2 - The E - MOSFET Differential Amplifier for Q.4 (a)

Q.4 (b) Identify the negative feedback topology as shown in the Fig. 3 below. Analyze to derive the expressions for the input resistance with feedback (R_{if}) & output resistance with feedback (R_{of}).

Fig. 3 – Negative Feedback Amplifier Topology for Q.4 (b)

77597 Page 2 of 3

N.S

10

10

- Q.5 (a) With a neat labelled diagram, explain the Hartley oscillator. Describe its advantages & disadvantages. Design the same for 50 kHz.
- 10
- Q.5 (b) Identify the low frequency RC oscillator from the Fig. 4 & explain its working with its advantages & disadvantages. From the given component values, calculate output frequency of oscillations (f_0).

10

Fig. 4 – The low frequency RC oscillator for Q.5 (b)

- Q.6 (a) Explain the working of silicon controlled rectifier (SCR) using the two-transistor analogy with a neat labelled diagram. Draw the structure / construction & V-I characteristics of SCR.
- Q.6 (b) Describe construction & explain the working of uni-junction transistor (UJT) with neat labelled diagram & V-I characteristics. Define the term 'intrinsic stand-off ratio'.

77597 Page 3 of 3