Paper / Subject Code: 40901 / Applied Mathematics-IV

[Total Marks: 80]

(3 Hours)

Note: 1) Question no 1 is compulsory.

		2) Attempt any 3 question out of remaining.	
		3) Each question carries 20 Marks.	556
		4) Figures to right indicate full marks.	68
Q.1	a)	Compute the Spearman's Rank correlation coefficient for the following data: x: 18 20 34 52 12 y: 39 23 35 18 46	[5]
	b)	Evaluate $\int_0^{2+i} z^2 dz$ along the line x=2y.	[5]
	c) d)	Find the projection of $u = (3, 1, 3)$ along and perpendicular to $v = (4, -2, 2)$	[5]
	u)	Find the eigen values of $5A^2 - 6A + I$ where $A = \begin{bmatrix} -1 & 5 & 9 \\ 0 & -3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$	[5]
Q.2	a)	Find the extremals of $\int_{x_1}^{x_2} \frac{y'^2}{x^2} dx$	[6]
	b)	Use Gram-Schmidt process to construct the orthogonal basis from $x_1 = (1, 1, 1), x_2 = (0, 1, 1), x_3 = (0, 0, 1).$	[6]
	c)	Show that $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is diagonalisable and hence find the transforming matrix and	[8]
Q.3	a)	diagonal form of A. For a normal variable x, with mean 2.5 and standard deviation 3.5, find the probability	[6]
	b)	that (i) $2 \le x \le 4.5$ and (ii) $-1.5 \le x \le 5.5$ The ratio of the probability of 3 successes in 5 independent trials to the probability of 2 successes in 5 independent trials is 1:4. What is the probability of 4 successes in 6 independent trials?	[6]
	c)	Using Rayleigh-Ritz Method find the solution of $I = \int_0^1 (2xy + y^2 - y'^2) dx$ where	[8]
Q.4	a)	$0 \le x \le 1$ and $y(0)=y(1)=0$. Find the line of regression of Y on X for following data x: 10 12 13 16 17 20 25 y: 19 22 24 27 29 33 37. Hence find the value of y at x=15.5	[6]
	b)	Evaluate $\oint_c \frac{3z^2 + 2z - 2}{(z - 1)(z - 2)} dz$ where C is the curve (i) $ z = \frac{1}{2}$, (ii) $ z = \frac{3}{2}$, (iii) $ z = 3$	[6]
	c)	Find the m.g.f. of Poisson's Distribution about origin. Hence find its mean and variance	[8]
Q.5	a)	If x is a continuous random variable with probability distribution function $ \begin{cases} \frac{x}{2} + k & \text{if } 0 < x < 3 \end{cases} $	[6]
	2 T Z	$f(x) = \begin{cases} 6 & \text{if } 0 \leq x \leq 3 \\ 0 & \text{otherwise} \end{cases}$ then find the value of k and P $(1 \leq x \leq 2)$	
	b)	If x is a continuous random variable with probability distribution function $f(x) = \begin{cases} \frac{x}{6} + k & \text{if } 0 \le x \le 3 \\ 0 & \text{otherwise} \end{cases}$ then find the value of k and P (1 \le x \le 2) $ \text{otherwise} $ If $A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix} $ then find the values of matrices e^A and 4^A .	[6]
	c)	Find all possible expansions of $f(z) = \frac{2-z^2}{z(1-z)(2-z)}$.	[8]
Q.6	a)	Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3sin\theta}$ using Cauchy Residue Theorem.	[6]
	b)	Show that the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ is derogatory and find its minimal polynomial	[6]
	26 C	also.	FO3
	c)	Show that the set of real numbers is a vector space with the operations defined as $x + y = xy$ be addition and $cx = x^c$ be scalar multiplication.	[8]