Q.P. Code: 37284

[Time: 3 Hours] [Marks: 80]

Please check whether you have got the right question paper.

N.B: 1. **Q.1** is compulsory.

- 2. Solve any three questions from Q.2 to Q.6
- 3. Assume suitable data
- 1. Write any four 20
 - (a) Explain high frequency equivalent circuit of BJT.
 - (b) Explain Barkhausen criteria
 - (c) Draw MOSFET differential amplifier with active load.
 - (d) Calculate max. power dissipation with and without heat sink $\theta_{JC}=1.75^0$ C/W , $\theta_{CS}=1^0$ C/W , $\theta_{CA}=50^0$ C/W $\theta_{SA}=5^0$ C/W , $T_{JMAX}=150^0$ C and $T_{AMB}=30^0$ C
 - (e) Explain PNPN diode.
- 2. (a) Explain class B push pull power amplifier and cross over distortion also 10 derive expression for efficiency.
 - (b) Explain small signal analysis for MOSFET active load circuit 10
- 3. (a) Calculate lower cut off frequency for given circuit. 10 $\beta = 80$, $r_{\pi} = 1.3$ K Ω , $g_{m2} = 50\mu$ A/V, $C_{\pi} = 15pF$, $C\mu = 1pF$

- (b) Explain working of SCR with V-I characteristics and its applications. 10
- 4. (a) Explain Hartley oscillator. Design the same for 50KHz.

Q.P. Code: 37284

10

10

10

(b) Find I_Q for given circuit.

 $K_{n1} = K_{n2} = 0.1 \text{ mA/V}^2$, $K_{n3} = K_{n4} = 0.3 \text{mA/V}^2$, $V_{TN} = 1 \text{ V}$,

 $\lambda = 0$ for M_1 , M_2 , M_3 and $\lambda = 0.01/V$ for M_4

5. (a) Calculate bandwidth for two stage RC coupled CE amplifier.

 $\beta_1 = 100$, $\beta_2 = 150$, $r_{\pi 1} = r_{\pi 2} = 1.3 \text{ K}\Omega$, $g_{m 1} = g_{m 2} = 50 \text{mA/V}$

 $C_{\pi 1} = C_{\pi 2} = 15 \ pF$, $C\mu_1 = C\mu_2 = 1pF$

- (b) Explain feedback topologies with the help of neat block diagram.
- 6. Solve any three 20
 - (a) Cascode MOSFET amplifier
 - (b) UJT relaxation oscillator
 - (c) Darlington configuration
 - (d) Power BJTs

~~<u>~</u>