## Paper / Subject Code: 49704 / CIRCUIT THEORY

Q. P. Code: 50072

(2½ Hours) (Total Marks: 60)

Please check whether you have the right question paper.

**N.B.:** 1) **Questions No.1** is **compulsory**.

- 2) Solve **any three** questions out of remaining **five** questions.
- 3) **Figures** to the **right** indicate **full marks**.
- 1. a) State and explain properties of positive real function. (05)
  - b) Compare series and parallel resonance circuit. (05)
  - c) Determine the driving point impedance of the network shown. (05)



- d) Determine whether  $p(s) = s^4 + s^3 + 2s^2 + 3s + 2is$  Hurwitz. (05)
- 2. a) In the network shown the switch is changed from position 1 to 2 at t = 0. Find the (10) values of i,  $\frac{di}{dE}$  and i,  $\frac{d^2i}{dt^2}$  at  $t = 0^+$ .



- b) Find the Foster forms of the following impedance function: (10)  $z(s) = \frac{(s+1)(s+4)}{(s+5)(s+3)}.$
- 3. a) Find Y parameters for the network shown: (10)



**TURN OVER** 

## Paper / Subject Code: 49704 / CIRCUIT THEORY

2

Q. P. Code: 50072

b) The network given below is under steady state with switch at position 1. At t = 0 the (10) switch is moved to positions 2. Find i(t).



4. a) Test whether the following function is positive real: (05)

$$f(s) = \frac{s^2 + 6s + 5}{s^2 + 9s + 14}.$$

- b) Derive the condition for reciprocity and symmetry for the network in terms of z (10) parameters.
- c) Derive the relation for characteristic impedance of a transmission line. (05)
- 5. a) Find the current through 3  $\Omega$  resistor using Theremins theorem: (05)



b) In the network shown find the voltages  $v_1 \& v_2$ : (05)



c) Find the current through  $5\Omega$  resistor for the network given below: (10)



3

Q. P. Code: 50072

- 6. a) The characteristic impedance of a high frequency line is  $100 \Omega$ . It is terminated in an impedance of  $100 + j100\Omega$ . Using a smith chart find the impedance at  $\frac{1}{8}$  wavelength away from the load end.
  - b) In the network shown the switch is closed at t=0 connecting a source  $e^{-t}$  to the network at t=0.  $V_c(0)=0.5$  V. Determine V(t).

