DURATION: 3 HOURS

MAX.MARKS:80

- 1) Question No.1 is compulsory
- 2) Attempt any THREE of the remaining
- 3) Figures to the right indicate full marks.

Q1

5050

- A) Find Laplace transform of $f(t) = \sin^5 t$
- B) Prove that $u = x^2 y^2$ is harmonic function also find corresponding analytic function f(z)
- C) Find the half range sine series of f(x) = 2x in $(0, \pi)$
- D) Find the Unit normal vector to the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2,-1,2) hence find angle between them

Q2

- A) Prove that $J_{(-3/2)}(x) = -\sqrt{\frac{2}{\pi x}} \cdot (\frac{\cos x}{x} + \sin x)$
- B) Find the Bilinear transformation which maps the points z=1, i, -1 onto the points w=0, 1, ∞
- C) Obtain the fourier series for $f(x) = x\cos x$ in $(-\pi, \pi)$

Q3

- A) Find inverse laplace transform of

 (i) $\log(\frac{1+s^2}{4+s^2})$ (ii) $\frac{s+5}{(s+4)^3}$
- B) Show that the of functions { $\cos x$, $\cos 5x$,....} is an orthogonal over $[0, \pi/2]$. Hence construct orthonormal set of functions.
- C) Prove that $y = \sqrt{x} . J_n(x)$ is a solution of the equation, $x^2 \frac{d^2 y}{dx^2} + (x^2 n^2 + \frac{1}{4})y = 0$

76846

Paper / Subject Code: 51301 / Applied Mathematics-III

Q4		
A)	Prove that $\int x^4 J_1(x) dx = x^4 J_2(x) - 2x^3 J_3(x)$	6
B)	Use Gauss's Divergence theorem to evaluate $\iint_S \overline{N} \cdot \overline{F} ds$ where $\overline{F} = 4xi + 3yj$ -2zk and S is the surface bounded by $x=0$, $y=0$, $z=0$ and $2x + 2y + z=4$	6
C)	Solve using Laplace transform($D^2 + 2D + 1$)y = 3te ^{-t} ,given y(0)=4 and y'(0)=2	8
Q5		
A	Find Fourier series for	6
	$f(x) = \begin{cases} \pi + x , & 0 < x < \pi \\ \pi - x , & -\pi < x < 0 \end{cases}$	
B)	Find the image of the region bounded by $x+y=0$, $x=y$, $x+y=1$, $x-y=1$ under	6
	the bilinear transformation $w = 2\bar{z} + 2i$	E. C. C.
c)	Prove that $\bar{F} = (y^2 \cos x + z^3)i + (2y \sin x - 4)j + (3xz^2 + 2)k$ is a conservative field	8
	. Find (i) Scalar Potential for \bar{F} (ii) The work done in moving an object in	
	this field from $(0,1,-1)$ to $(\frac{\pi}{2},-1,2)$.	
_		
Q6		
A)	Find the Laplace Transform of $e^{-t} \int_0^t sin 3u cos 2u du$	6
B)	Find Complex form of Fourier Series of sinh2x in (-2, 2)	6
C)	Express the function	8
7	$f(x) = \{ \begin{cases} 1 & x < 1 \\ 0 & x > 1 \end{cases}$ as Fourier integral .Hence evaluate	
	$\int_{0}^{\infty} \frac{\sin w \cdot \cos wx}{w} \ dw$	
