Paper / Subject Code: 49703 / DIGITAL CIRCUITS AND PESIGN: 22983

(**3 Hours**) Marks : **80**

NB: (1) Question **No.1** is **compulsory.**

- (2) Out of remaining questions, attempt any three questions.
- (3) Assume suitable data, wherever necessary.
- 1. (a) Explain the term noise margin and its value for TTL and CMOS family. 5
 - (b) Differentiate between synchronous and asynchronous counter. 5
 - (c) Draw truth table and logic diagram of Full Adder. 5
 - (d) Explain shift registers and its applications.
- 2. (a) Use k- map to reduce the following function and then implement it using NOR 10 gates only.

$$F (ABCD) = \sum_{i} m (4,6,12,14) + \sum_{i} d (1,3,9,11)$$

- (b) Implement the following function using 8:1 MUX and logic gates. P (A,B,C,D) = \sum m (1,2,5,8,10, 12,15) + \sum d (0,6)
- 3. (a) Design a mealy sequence detector to detect 1010 using D flip-flops and logic gates. 10
 - (b) Design a MOD 5 asynchronous counter and explain the glitch problem.
- 4. (a) Design a circuit with optimum utilization of PLA to implement the following functions.

$$F1 = \sum m(2,12,13)$$

$$F2 = \sum m (7,8,9, 10, 11,12,13,14, 15)$$

$$F3 = \sum m (1,2,8,12,13)$$

- (b) Design 4 bit Johnson counter using J-K flip-flop. Explain its working using 10 waveform.
- 5. (a) Eliminate redundant states and draw reduced state diagram.

Present State	Next State		Output	
	X = 0	X = 1	X = 0	X = 1
1	2	3	0	0
2	2	4	0	0
3	2	3	0	0
4	5	3	0	0
5	2	6	0 .	1
6	5	3	0	0

(b) Discuss XC 4000 FPGA architecture with neat block diagram.

10

5

Paper / Subject Code: 49703 / DIGITAL CIRCUITS AND DESIGN

QP CODE: 22983

2

6. Write notes on:

20

- (a) VHDL
- (b) Stuck at '0' stuck at '1' fault.
- (c) Master slave JK flip-flop.
- (d) BCD Adder.