Paper / Subject Code: 51303 / Digital Circuit Design

(Time: 3 Hours)	[Total Marks: 80]
 N.B.: (1) Question No. 1 is Compulsory. (2) Attempt any three questions out of remaining five. (3) Each question carries 20 marks and sub-question carry (4) Assume suitable data if required. 	equal marks.
Q1. a) Design and implement full subtractor using logic gates. b) Explain the working of a two –inputs CMOS NOR gate with c) Design a circuit using 2:1 MUX to implement 2 Input NANI d) Evaluate following operation in BCD. (i) (56) ₁₀ + (23) ₁₀ (ii) (48) ₁₀ + (26) ₁₀	
Q2.a) Convert $(27)_{10}$ & $(42)_{10}$ into binary, octal, Hexadecimal, Ex	cess-3 code and Gray code. (10)
b) Draw a neat circuit diagram of four bit Twisted ring counter relevant output waveforms.	with initial state 0000 and (10)
Q3.a) Design a combinational logic circuit with four input variables1 output when input is greater than 9.b) Draw a circuit diagram of clocked J-K flip –flop using NAN	(10)
What is race around condition and how does it get eliminated	•
Q4.a) Simplify the expression in POS form for given function and r $F(A,B,C,D)=\sum m (0,4,6,7,10,12,14)+d (2,13)$	realize it with basic gates. (10)
b) Convert the followings i) SR flip flop to JK flip flop. ii) JK flip-flop to D flip-flop	(10)
Q5 a) Implement the following expression using a single 8:1 multip $F(A,B,C,D) = \sum m (0,2,4,6,8,10,12,14)$	blexer. (10)
b) Simplify the following four variable Boolean function using ($F(A, B, C, D) = \sum_{i=1}^{n} m(0, 2, 3, 6, 7, 8, 10, 12, 13)$	Quine-Mccluskey technique. (10)
Q6.a) Design a Mod-5 synchronous up counter using T flip-flop. D approach.	esign using minimal cost (10)
b) Explain interfacing of a TTL gate driving CMOS gates and v	ice versa. (10)
\$\$.CB\$\$\$\$\$\$	