Q. P. Code: 13673 (3 Hours) [Total Marks : 80 Note: 1) Question No.1 is compulsory. - 2) Attempt any three questions from remaining five questions. - 3) Figures to the right indicate full marks. - 4) Use Smith Chart for transmission line problem. | | Sol | ve the following questions. | | |------|-----|---|----| | | a) | Test for Hurwitz polynomial using Routh Hrwitz array $P(s)=S^8+5S^6+2S^4+3S^2+1$ | 5M | | | b) | Check whether the given function is LC/RC/RL function.
F(s)=(s+2)(s+6)/2(s+1)(s+3) | 5M | | Q.1) | c) | Find VSWR and refection coefficient (Use Smith Chart) $Z_{L=}2+j2$ | 5M | | | d) | Find the equivalent inductance of the network shown. | 5M | | | | 3 K 1H O.5H 2H 5H | | | | | | | | Q.2) | a) | In the network shown the switch is changed from the position 1 to the position 2 at $t=0$. Steady condition having reached before switching. Find the values i, di/dt and d^2i/dt^2 at $t=0^+$. | 8M | | | | 400 T 20-12 - 1MF | | | | | 31H i(d) 4 | | | | b) | Calculate the voltage across resistor 6Ω using source shifting technique. | 8M | | | | 18V = \$2.0 \$6.0 Va | | | | c) | A coil of 20 Ω resistance has an inductance of 0.2 H and connected in parallel with a condenser of 100 μF Capacitance. Calculate the frequency at which this circuit will have as a non –inductive resistance. Find also the value of dynamic resistance. | 4M | Q. P. Code: 13673 2 | a) What are standing waves? A transmission line has a characteristic impedant 50 Ω and terminated in a load Z_L = 75-j100 Ω. Find the following using a Schart a) VSWR b) Reflection coefficient c) input impedance at a distance 0 from the load d) location of first voltage maximum and first voltage minim the load. b) Find the Thevenin's equivalent of following network. Q.3) C) Test for Hurwitz polynomial using continued fraction expansion method. | Smith | |--|--------------| | chart a) VSWR b) Reflection coefficient c) input impedance at a distance 0 from the load d) location of first voltage maximum and first voltage minim the load. b) Find the Thevenin's equivalent of following network. Q.3) | um from | | from the load d) location of first voltage maximum and first voltage minim the load. b) Find the Thevenin's equivalent of following network. Q.3) A | um from | | the load. b) Find the Thevenin's equivalent of following network. Q.3) A | | | D) Find the Thevenin's equivalent of following network. Q.3) O Ix | 8M | | $\begin{array}{c c} Q.3) & & & & & & & & & & & & \\ \hline & & & & & &$ | 8M | | $\begin{array}{c c} Q.3) & & & & \downarrow \\ \\ & \downarrow \\ & \downarrow \\ & $ | | | 1A (1) 35-9 B | | | B | | | B | | | c) Test for Hurwitz polynomial using continued fraction expansion method. | | | c) Test for Hurwitz polynomial using continued fraction expansion method. | | | c) Test for Hurwitz polynomial using continued fraction expansion method. | | | c) Test for Hurwitz polynomial using continued fraction expansion method. | İ | | c) Test for Hurwitz polynomial using continued fraction expansion method. | 42.6 | | | 4M | | $P(s) = S^4 + 7S^3 + 6S^2 + 21S + 8$ | | | Q.4) a) Find the voltage across 5Ω resistor in the network shown below. K=0.8 coefficients | efficient 8M | | of coupling. | | | 110-17 | | | | | | 50 Lov(n) > | | | I, 4 = 5- | -√- | | 1 - 14-0 | | | | | | b) Test for positive real function | 12M | | 93+62-176-12 | 12 | | i) $F(s) = \frac{3 + 63 + 7 + 3 + 3}{3 + 3 + 3}$ | | | 5 7.23+1 | | | 2 | | | ii) $F(s) = \frac{S^2 + S + 6}{S^2 + S + 1}$ | ÷ | | $S^2 + S + I$ | | | | | | | | | Q.5) | a) | Two identical sections of the network shown are connected in cascade. Obtain the | 10M | |------|----|--|-----| | | | transmission parameters of the overall connection. | | | | | transmission parameters of the overall connection. $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | | | | | N, \$1-12 \$2-12 V2 | | | | | | | | | | | | | | b) | In the network shown determine the currents $i_1(t)$ and $i_2(t)$ when the switch is | 10M | | | | closed at t=0. | | | | | In the network shown determine the currents $1_1(t)$ and $1_2(t)$ when the switch is closed at t=0. Realize factor form Land factor form II for the following function. | | | | | 100V T \$5-2 | | | | | $\left\{\begin{array}{c} (1) \\ (2) \end{array}\right\} = \left\{\begin{array}{c} (2/3) \\ (2/3) \end{array}\right\}$ | | | | | 30.0114 | | | | | | | | Q.6) | a) | Realize loster form I and loster form II for the following function. | 8M | | | | $Z(s) = \frac{(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)}$ | | | | | S(5 ² +2) | | | | b) | The pole zero diagram of the driving point impedance function of the network is | 8M | | | | shown below. At dc, the input impedance is resistive and equal to 2W. Determine the values of R, L and C. | | | | | the values of R, L and C. $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | | | | | $ z(s) \stackrel{-1}{c_s} = \frac{1}{2}$ | | | | | 3 Ls x | | | | | | | | | c) | Find the nominal impedance, cut off frequency and pass band for the network | 4M | | | | shown. 25mH 25mH | | | | | 00 2-1 | | | | | - 0.2 MF | | | | | 0 | | | | | | | | | | | |