Duration: 3hrs

[Max Marks: 80]

(3	2) Attempt any three questions out of the remaining five. 3) All questions carry equal marks. 4) Assume suitable data, if required and state it clearly.	
Q1.	Answer the following	20
a	Draw input-output curve, heat rate curve and incremental fuel cost curve and explain their importance in economic load dispatch.	
b	Derive characteristic equation and state the condition for steady state stability in power system.	
c	Write the static load flow equations and explain the classification of buses in power system.	
d	For an isolated single area, consider the data given below. Load decreases by 1% for a decrease in frequency by 1%. Find the gain and time constant of the power system represented by a first order transfer function. Total Area Capacity=1000 MW, Normal Operating Load = 500 MW, H = 5 sec, R= 2.5 Hz / pu MW, Operating Frequency =50 Hz.	
e	Draw the diagram to indicate interconnection between different operating states of power system and explain each operating state.	
Q 2. A	Derive the equation for optimum generation scheduling considering transmission losses (Exact coordinate equation)	10
Q 2. B	A synchronous generator is generating 20% of the maximum power it is capable of generating. If the mechanical input to the generator is increases by 250% of the previous value, calculate the maximum value of torque angle during the swing of rotor round the new equilibrium point.	10
Q3. A	Compare GS, NR and Fast decoupled load flow methods for solution of Static Load Flow Equations of a power system.	10
Q3. B	A constant load of 300 MW is supplied by two 200 MW generators, 1 and 2, for which the respective incremental fuel costs are $IC_1 = 0.1P_1 + 20$ Rs/MWh $IC_2 = 0.12P_2 + 15$ Rs/MWh with powers in MW and costs C in Rs/hr. Determine (a) the most economical division of load between the generators, and (b) the saving in Rs/day thereby obtained compared to equal load sharing between machines.	10
Q4. A	Derive Swing equation for a synchronous machine that describes rotor dynamics.	10
Q 4. B	Find the steady state power limit of a system consisting of a generator equivalent reactance 0.50 pu connected to an infinite bus through a series reactance of 1.0 pu. The terminal voltage of the generator is held at 1.20 pu and the voltage of the infinite bus is 1.0 pu.	10
700-		

Q 5 A Draw complete block diagram and explain dynamic response of Load frequency controller for an isolated power system with and without PI controller.

10

Q 5.B For the following system generators are connected to all the four buses and loads are connected at buses 2 and 3. All buses other than slack bus are PQ buses. Assuming flat voltage start, determine the bus voltages at the end of first Gauss Seidel iteration.

10

Line Bus to	Y(pu)	
bus		
1-2	2-j6	
1-3	1-j3	
2-3	0.6667-j2	
2-4	1-j3	
3-4	2-j6	

Bus	P(pu)	Q(pu)	V(pu)	Remarks
1,7	- 4,	- 8	1.04<0°	Slack
2	0.5	-0.2	- 🚕	PQ
∀ 3	-0.1	0.5	N. C.	PQ
4	0.3	-0.1	ST.	PQ

Q 6. A What is power pool? Explain the different types of energy transactions and interchanges in power system.

10

Q 6. B Two generators rated 250 MW and 350 MW are operating in parallel. The droop characteristics of their governors are 4% and 5%, respectively from no load to full load. Assuming that the generators are operating at 50 Hz at no load, how would a load of 600 MW be shared between them? What will be the system frequency at this load? Assume free governor operation.

10
