(3 Hours)

[Total Marks: 80]

N.B. 1) 2) 3) 4)	Question No.1 is compulsory. Attempt any three from remaining questions. Figures to right indicate full marks. Assume suitable data if necessary.	
Q1 (a)	Solve any Five Questions. Define periodic and non periodic signals and check the periodicity of signal	20 5
(11)	$x(n) = \left(\sin\frac{2\pi n}{3} + \cos\frac{2\pi n}{5}\right).$ Find its fundamental period if the signal is periodic.	
(b)	Check whether the system $y(n) = a^n x(n)$ is static/dynamic, linear/nonlinear and Time variant/ Time Invariant.	5
(c)	The transfer function of LTI system is $H(Z) = \frac{z-1}{(z-2)(z+3)}$ Determine the	5
(d) (e)	impulse response. Find the 4-point DFT of x (n) = {1, -2, 3, 2} using matrix method. Compare analog and digital filters and state requirement of digital filter to be stable and causal.	5
(f)	Determine whether the system $H(Z) = \frac{1+2z^{-1}}{1+\frac{6}{5}z^{-1}+\frac{9}{25}z^{-2}}$ is both Causal and Stable.	5
Q 2(a)	Sketch the signal $x(n) = 2u(t+2) - 2u(t-3)$	5
(b) 8	Find even and odd components of signal $x(n) = \{5, 4, 3, 2, 1\}$	5
00000	Find Z-transform of following signals. i. $x(n) = 2^n u(n-2)$ ii. $x(n) = \left(\frac{1}{2}\right)^n u(n) * \left(\frac{1}{4}\right)^n u(n)$	10
3.(a)	If DFT of $\{x(n)\} = X(k) = \{4, -j2, 0, j2\}$, using properties of DFT, find i. DFT $x(n-2)$ ii. DFT $x^*(n)$ iii. DFT $x^*(n)$ iv. DFT $x^2(n)$ v. DFT $x(n)$ * $x(n)$	10

Paper / Subject Code: 88923 / Signal Processing

- (b) Find the inverse Z-transform of $X(Z)=\frac{3z^{-1}}{(1-z^{-1})(1-2z^{-1})}$ if a.ROC |Z|>2 b.ROC |Z|<1 c.ROC 1<|Z|<2
- 4.(a) Find the 8-point DFT by radix-2, DIT FFT algorithm.
 x(n) = {2, 1, 2, 1, 2, 1, 2, 1}
 (b) Determine the response of LTI system governed by the equation,
 10
 - (b) Determine the response of LTI system governed by the equation, y(n) 0.5y(n-1) = x(n) for the input $x(n) = 5^n u(n)$, and initial condition y(-1) = 2.
- 5.(a) A low pass filter is to be designed with the following desired frequency response: $\pi \pi \pi$

$$H_d(e^{j\omega}) = \begin{cases} e^{-j2\omega}, & -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \\ 0, & -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \end{cases}$$

Determine the filter coefficients h(n) if the window function is defined as:

$$w(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & otherwise \end{cases}$$
A linear shift invariant system is described by the difference equation

- (b) A linear shift invariant system is described by the difference equation $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1) \text{ with y (-1)} = 0$ and y (-2) = -1. Find the natural response of the system.
- 6.(a) Find DTFT of sequence $x(n) = n \left(\frac{1}{2}\right)^n u(n)$
- (b) Find the energy of signal $x(n) = \left(\frac{1}{2}\right)^n$ $n \ge 0$ $= (3)^n \quad n < 0$
- (c) Discuss the method of Bilinear transformation for Design of IIR filter.