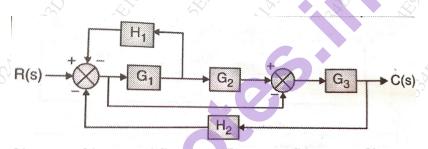
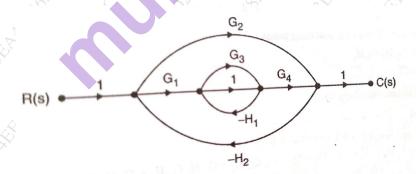
Time (3 Hours)

80 Marks


Note: (1) Question no. 1 compulsory

- (2) Attempt any 3 question out of remaining five questions.
- (3) Draw neat diagram wherever necessary.

Q 1.Attempt any Four

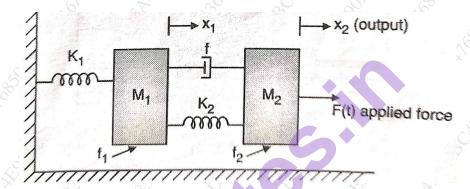

20Marks

- a. Explain the effects of addition of open loop poles and zeros on root locus and transient response.
- b. Differentiate between open loop and closed loop system.
- c. What ate the advantages of using state space analysis over classical approach?
- d. Explain Nyquist Criterion for stability.
- e. Explain force current analogy in mathematical modeling of control system.
- Q 2.a. Obtain the transfer function for the following figure using Block Diagram 10 Marks Reduction method.

b. Obtain the transfer function for the following figure using Mason's gain formula

10 Marks

- Q3. a. Given the unity feedback system that has the forward transfer function 10 Marks $G(s) = \frac{k(s+2)}{s(s^2+4s+13)}.$ Sketch the complete root locus.
 - b. For a system with characteristic equation:


10 Marks

 $F(s)=s^4+2s^3+10s^2+s+K=0$, obtain the value of k for marginal stability and also find the frequency of oscillation at that value of k using Routh Hurwitz criteria.

12190

Paper / Subject Code: 32023 / Control System

- Q4.a. A feedback control system has $G(s) H(s) = \frac{100}{s (s+0.5) (s+10)}$. Draw Bode plot And comment on stability.
 - b. For a unity feed back system has a forward path transfer function G(s)=(S+2)/S(S+1)
 Determine rise time, peak time, peak overshoot, settling time, delay time to unit step input
- Q5. a. Find the transfer function X(s) / F(s) of the following system using mathematical modeling of the system.

- B.Represent the following state space equation in phase variable form
- 10 Marks

and also draw its state model
$$\frac{C(s)}{R(s)} \equiv \frac{10 (s+2)(s+3)}{(s+1)(s+4)(s+5)}$$

- Q 6 a. The control system having unity feedback has $G(s) = \frac{20(s+3)}{(1+s)(6+s)}$. 10 Marks Determine (1) Type of system. (2) All error coefficient (3) error when subjected tostep of magnitude 2.
 - b. Explain AC servomotor and also draw the diagram.

10 Marks