3 Hours

Total marks: 80

Instructions:

- 1. QuestrionNo.1 is compulsory.
- 2. Answer any three from the remaining five questions
- 3. Figures to the right indicate full marks.

1 Solve any four:-

(20)

- a) Convert $\overline{A} = 3\overline{a_x} + 4\overline{a_y} + 5\overline{a_z}$ at the point(3,4,5) in spherical coordinates.
- b) State and explain Biot-savart law
- c) Explain Coulomb's Law.
- d) Find the force on current carrying wire in a magnetic field.
- e) What do you mean by irrotational and solenoidal fields?

2

- a) An aluminium conductor is 30 m long and has circular cross section with a diameter of 20.32mm. If there is a d.c. voltage of 1.2V between two ends, find (i) (J) (ii) Current (iii) Power dissipated, conductivity of $Al=3.82 \times 10^{-7}$ mho/m. (10)
- b) Find the force on a 100μ C charge at (0,0,3)m if four like charges of 20μ C are located on the x and y axis at \pm 4m. (10)

3

4

- a) Derive an electric field intensity due to infinite sheet charge. (10)
- b) Given that $\overline{D}=30 e^{-\frac{1}{b}}a_{\overline{r}} 2(z/b) a_{\overline{z}}$ (c/m²) in cylindrical coordinates, find the outward flux crossing the rights circular cylinder described by r=2b,z=0 and z=5b(m). (10)
- a) The region x<0 contains dielectric medium for which $\mathcal{E}_{r1}=4$, while the region x > 0 is characterized by $\mathcal{E}_{r2}=2$ if $\overline{E_1} = 50\overline{a_x} - 30\overline{a_y} + 60\overline{a_z}$ (KV/m) find i) E_{n1} ii) Θ_1 iii) E_{t1} iv) E_2 v) Θ_2 (10)
- b) V=0volts for r=0.1m and V=100Volts for r=2m in spherical co-ordinates Assuming free space between the concentric spherical shells. find \overline{E} and \overline{D} . (10)

Page 1 of 2

76062

5

- a) Derive magnetic field intensity on the axis of a circular loop. (10)
- b) Given $\overline{E} = E_0 z^2 e^{-t} \overline{a_x}$ in free space .Determine if there exists a magnetic field such that both Faraday's law and ampere's circuital law are satisfied simultaneously. (10)

6

- a) Derive the wave equation for electric field and magnetic field in free space (10)
- b) A 10GHz plane wave travelling in free space has an amplitude $E_x=10 \text{ V/m}$. find v, λ , β , η and amplitude and direction of H. (10)