Paper / Subject Code: 30402 / ELECTRICAL MACHINE II

(3 Hours)

[Total marks : 80]

Note: 1) Question No.1 is compulsory.

- 2) Attempt any three questions out of remaining five question.
- 3) Assume suitable data if required.
- 1. Solve any four each carry equal marks.
 - a. Explain connection and phasor diagram of DY 11 transformers.
 - b. Explain the operating principle of three phase induction motor.
 - c. Explain capacitor start capacitor run single phase I.M.
 - d .Explain need of parallel operations of transformers and write necessary condition for parallel operation.
 - e. Draw and explain torque slip characteristics of 3 phase I.M.

2). a Explain the oscillating neutral phenomenon in 3 phase transformer.

b. Two three phase transformers rated at 500 KVA and 450 KVA respectively and connected in parallel to supply a load of 1000 KVA at 0.8 PF lagging. The per phase leakage resistance and reactance of the first transformer is 2.5% and 6% respectively and of second transformer 1.6% and 7% respectively. Calculate the KVA load and PF at which each transformer operates. 10

3.a Explain with a neat diagram cogging and crawling phenomenon in 3 phase I.M. 10

b. A three phase I.M. having 6 pole star connected stator winding runs on 240v 50 H_2 supply. The rotor resistance and standstill reactance are 0.12 and 0.85 per phase. The ratio of stator of rotor turns is 1.8 and F.L. slip is 4%. Calculate the developed torque at F.L., maximum torque and the speed at maximum torque. 10

4. a. Explain the need of starter for 3 phase I.M. and explain auto-transformer starter in detail.
b. A 15KW, 400V, 4pole, 50Hz 3 phase star connected I.M. give the following test result

	ine current(A)	Power i/p (w)	Line voltage(v)
N.L, test		1310	400
Blocked rotor test	50	7100	200

Assume stator and rotor ohmic losses are equal at standstill. Draw circle diagram and find line current, power factor, slip, torque and efficiency at F.L. 10

5. a . Draw equivalent circuit diagram of single phase I.M. based on double field revolving theory and	
explain the double field revolving theory.	10
b. Explain shaded pole 1 phase I.M. in detail.	10

6. Write short note on any two

a. Scott connection of two 3 phase transformers.

b. Induction generator.

c. Power flow in 3 phase I.M.

76904

Page 1 of 1

A25758D617D7D65348366DA5292B35DD

20

10

20