Paper / Subject Code: 30401 / ELECTROMAGNETIC FIELDS & WAVES

Time: 3 Hours

Q.P.Code: 38369

Total Marks – 80

N.B: (1) Q. No. 1 is compulsory(2) Attempt any three out of remaining questions(3) Figures to right indicate full marks & assume data wherever necessary	
Q1 Attempt any four out of the following	(20)
(a) State and explain Gauss law of electrostatics.	
(b) Explain point form of continuity equation.	
(c) State and explain Lorentz force equation.	87 P
(d) Find force on $Q_2=200\mu c$ at P_1 (0, 4, 0) due to $Q_1=-150\mu c$ at P_2 (-3, 0, 0) in free	
space.	
(e) Define characteristics impedance and propagation constant.	ST
Q2 (a) Prove that the tangential component of E is continuous across a dielectrics Interfa	nce (10)
(b) $\mathbf{D} = (10r^3 / 4) \mathbf{a_r} (c/m^2)$ in cylindrical co-ordinates. Evaluate both sides of divergen	` ′
theorem for the volume enclosed by r=1 and r=2m, z=0 and z=10m. Calculate the	
outward flux.	(10)
Q3 (a) Explain magnetic scalar and vector potentials and derive the expression for them	(10)
(b) Current density $J=10^2$ sine a_r A/m ² in spherical co-ordinate.	(10)
Find current crossing the spherical shell of radius r=0.02m	
Q4 (a) Define inductance and mutual inductance. Derive inductance of solenoid	(10)
(b) Find the potential variation, e-field and capacitance between two spherical shells	(10)
of radius a and b. When inner shell placed at a potential V_{o} and outer shell	
is grounded.	
Q6 (a) Define uniform plane wave and derive the expression for lossy dielectrics.	(10)
(b) Given $\mathbf{E} = \text{Em sin (wt-}\beta z) \mathbf{a_y}$, in free space. Find \mathbf{D} , \mathbf{H} , \mathbf{B} at $t=0$	(10)
Q7 (a) A 300 MHz plane wave propagates through fresh water (σ =0) μ r=1, ϵ r =78.	(10)
Calculate Π , v , λ , β , alpha and delta.	
(b) State Maxwell's equation in AC and DC form.	(10)

Page ${\bf 1}$ of ${\bf 1}$
