Time: (3 Hours)

Total Marks - 80

N.B.:- (1) Question No.1 is compulsory.

- (2) **Attempt** any **three** questions out of remaining **five** questions.
- (3) Draw neat diagrams wherever it is necessary.

Q. 1 Answer any FOUR of the following

20

- a. Sketch the polar plot of the transfer function $G(s) = \frac{1}{s^2}$
- b. Find the transfer function relating the capacitor voltage, $V_c(s)$, to the input voltage, V(s) in the following figure

Represent the given system in cascade form of state space representation.
 Also draw SFG.

$$G(s) = \frac{5}{(s+3)(s+9)(s+7)}$$

- d. Compare open loop and closed loop control systems with the help of suitable example.
- e. Find the transfer function, $G(s) = \frac{X_2(s)}{F(s)}$, for the translational mechanical network shown

Q.2 a. Given the system represented in state space as follows:

10

$$\dot{x} = \begin{bmatrix} 0 & 1 & -2 \\ 0 & 3 & 1 \\ -5 & -2 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} x$$

Convert the system to one where the new state vector, z is

$$z = \begin{bmatrix} 1 & 3 & -2 \\ 4 & -1 & 0 \\ 2 & 5 & 1 \end{bmatrix} x$$

Page 1 of 3

- b. Derive the formula for rise time, peak time, settling time and percentage overshoot for a second order system.
- Q.3 a. Covert given block diagram into signal flow graph and obtain transfer function $G(s) = \frac{C(s)}{R(s)}$ using Mason's rule.

- b. Obtain Laplace transform solution of the following system.
 - $\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} e^{-t}$ $y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x$

10

Q.4 a. Draw Bode plot for the following unity feedback system, determine 10 ω_{gc} , ω_{pc} , PM, GM and comment on the stability of the system.

$$G(s) = \frac{100(s+2)}{s(s+1)(s+4)}$$

b. Reduce the block diagram shown below to a single block representing the 10 transfer function, G(s) = C(s)/R(s)

Q.5 a. A unity feedback system has an open-loop transfer function

$$G(s) = \frac{K}{(s+2)(s+4)(s+6)}$$

Plot Nyquist diagram and using your diagram find the range of gain K for stability

- b. The characteristics equation of a feedback control system is $s^4 + 20s^3 + 15s^2 + 2s + K = 0$
- . 10

10

10

- a) Determine range of K for the system to be stable.
- b) Can the system be marginally stable? If so, find the required value of K and the frequency of sustained oscillation.
- Q.6 a. A unity feedback system has an open-loop transfer function

$$G(s) = \frac{K(s+3)}{s(s+1)(s+2)(s+4)}$$

Sketch the root locus

Evaluate the static error constants for the following system and find the expected error for the standard step, ramp, and parabolic inputs.

