University of Mumbai #### **Examinations First Half 2022** Program: **Electrical Engineering**Curriculum Scheme: Rev2019 Examination: SE Semester IV Course Code: EEC403 and Course Name: Digital Electronics ## Note: 1. Make any suitable assumption 2. Figure to the right indicates full marks Max. Marks 80 Solve all. Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (20) 1 The MSB of signed binary number indicates its Option A: parity Option B: Sign Option C: maximum number Option D: its always zero and does not indicate any thing 2 The number of similar gates which a gate can drive is known as Option A: output Option B: fan out Option C: drive capacity Option D: A gate does not drive another gate What is the BCD code for $(13)_{10}$? Option A: 00001101 Option B: 00000111 Option C: 00010011 Option D: 00001011 4 Minimum number of selection inputs required for selecting one out of 32 inputs is Option A: 4 Option B: 3 Option C: 5 Option D: 8 5. A three variable expression with variables A, B, C is given as Y=AB+AC+ABC. This expression is in which form? Option A: Canonical POS Form Option B: POS Form Option C: SOP Form Option D: Canonical SOP form 6. How many cells will be present in the K-map of $f(A,B,C,D)=\pi M(2,4,6,7)$ Option A: 4 Option B: 8 Option C: 12 Option D: 16 7 The complex programmable logic device contains several PLD blocks and Option A: Field-programmable switches Option B: AND/OR arrays Option C: A global interconnection matrix Option D: A language compiler 8. Which Flip Flop is used to overcome the Race-Around condition? Option A: D Flip Flop Option B: Master Slave J K Flip Flop Option C: S R Flip Flop Option D: T Flip Flop 9 Derive the Boolean expression for the logic circuit shown below Option A: ABCDE Option B: $[C(A+B)D+\overline{E}]$ Option C: $[[C(A+B)D]\bar{E}]$ Option D: C(A+B)DE 10. Which of the following is a combinational circuit? Option A: Multiplexer Option B: Registers Option C: Counters Option D: Latches ### Q.No. 2. Solve any Two a. Convert the hex number A72E to equivalent binary, decimal, octal, BCD and Grey code (10) b. Design BCD to Excess 3 code converter using basic gates. (10) c. Simplify the following using K-map implement using NAND gates $y = \sum m (0.1, 2.5, 9.13, 14.15) + d(4.6,10)$ (10) ## Q.No. 3. Solve any Two a. Design MOD 12 synchronous counter using T flip flop. b. Explain the design of a 4 bits D to A converter using weighted register D/A technique. Use suitable diagrams for the explanation. (10) (10) c. Write a note on Programmable Arrey Logic. Implement the following using PAL $F(A,B,C,D) = \sum m(0,1,3,15)$ (10) ### Q.No. 4. Solve any Two a. i. Write a short note on memory mapping and address decoding.ii. Write short notes on different logic families (TTL; CMOS). $\sim (10)$ b. What is quantization? Explain three bits A to D converter using successive approximation technique. Explain with the help of suitable diagrams (10) c. write short note on the characteristics of digital IC (10)