Paper / Subject Code: 40921 / Engineering Mathematics-IV

Max. Marks: 80

Time: 3 hrs.

[5]

[5]

[6]

N.B.: 1. Q1 is compulsory

- 2. Attempt any three questions from Q2 to Q6.
- 3. Figures to the right indicate full marks.

Q1. (a) Evaluate the integral
$$\int_C \frac{1}{(z^2+1)(z^2+4)} dz$$
, C: $|z-2i|=2$.

(b) A r.v. X has the distribution

Find i) k ii) $P(3 < X \le 6)$

(c) Using Gram Schmidt method, find an orthogonal set of vectors corresponding to (1,1,0,1), (-1,0,1,0), (0,0,1,-1).

(d) Find the equations of line of regression of y on x for the following data.

x : 5 6 7 8 9 10 11 y : 11 14 14 15 12 17 16

Q2. (a) Find the Extremal of $\int_{0}^{1} y y' + (y'')^2 dx$,

y(0) = 0, y'(0) = 1, y(1) = 2, y'(1) = 4

(b) Find the Laurent series expansion of $\frac{z+2}{z^2-1}$ convergent in the [6]

domain |z| > 1.

(c) Reduce the quadratic form $x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$ [8] to diagonal form by congruent transformation. Obtain the transformation applied in the reduction and Find the rank, index and class value.

[6]

[6]

Q3. (a) Find the Extremal of
$$\int_{x}^{x_2} \sqrt{1 + (y')^2} dx$$
.

(b) There the two brands of smartphone available in the market. A person may buy a smartphone of brand X in 75% and that of Y is 25%. If 95% of brand X and 80% of brand Y perform according to the specification. If the smartphone bought by him is working according to the specification, then what is the probability that it is of brand Y?

(c) Find a singular value decomposition of the matrix $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$

Q4. (a) Evaluate the integral $\int_{C} \frac{\cos^2 z}{z^5} dz$, C:|z|=1, using Cauchy

integral formula.

(b) Find the usual inner product between the two vectors (2, 6, 1, -3)

and (3,2,1,0). Find the norm of each vectors and verify the Cauchy

Schwarz inequality.

(c) The marks of 1000 students of an Engineering college are distributed [8]
normally with mean 70 and standard deviation 5. Estimate the number of students whose marks will be i) between 60 and 75 ii) more than 75

Q5. (a) If C is the rectangle formed by the lines $x = \pm 2$, $y = \pm \frac{1}{2}$, then [6]

Evaluate the Integral $\int_C \frac{2z}{z^4 - 1} dz$

(b) Calculate the rank correlation coefficient for the following data.[6]x : 10 12 18 16 15 40(6)

y : 12 18 20 15 50 25

(c) Using Rayleigh-Ritz method, find an approximate solution for the [8]

Extremal of $\int_{0}^{1} (y')^{2} - 4y^{2} + 2x^{2}y \, dx, \, y(0) = 0, \, y(1) = 0$

28765

Paper / Subject Code: 40921 / Engineering Mathematics-IV

Q6. (a) Random variables X_1 has mean 5 and variance 5, X_2 has [6] mean -2 and variance 3, $X_1 & X_2$ are independent. Find $E(2X_1+3X_2-5)$, $Var(X_1+X_2)$, $Var(3X_1-2X_2-5)$. (b) Let $W_1 = \{(x,y) \mid x, y \in \mathbb{R}, y = mx\}$ and $W_2 = \{(x,y) \mid x, y \in \mathbb{R}, xy \ge 0\}$. [6] Show that W_1 is a subspace and W_2 is not a subspaces of \mathbb{R}^2 (c) Fit a second degree parabolic curve to the following data to predict the [8] annual production where year = 1974 + x.

 $\begin{array}{c} x & : & 0 & 1 & 2 & 3 & 4 \\ \text{Production in crores tons}(y) & : & 2 & 4 & 6 & 4 & 3 \end{array}$

Predict the production (in crores tons) in the year 1980 based on this fitting.

