		(3 Hours) [Total Marks:80]	37.75
N.B.	(1)	Question no.1 is compulsory.	£ 6
	(2)	Attempt any three from the rest.	
	(3)	Make any suitable assumption wherever required.	
Q.1		Answer any FOUR of following	
	(a)	Give the ideal and practical values of the following parameters	5M
		a) CMRR b) Slew Rate c)) Input Resistance d) Output Resistance	V V C
		e) PSRR	
	(b)	For a inverting summing amplifier if $R_1 = 5K\Omega$, $R_1 = 1K\Omega$, $R_2 = 2K\Omega$ and $R_3 = 5K\Omega$	5M
		with supply voltage of $\pm 12V$ if following inputs are applied calculate the output voltage if	
		I) V_1 =3mV, V_2 =4mV and V_3 =6mV	
		II) $V_1=3V$, $V_2=4V$ and $V_3=6V$	300
	(c)	I) Simplify the following	5M
		$\overline{AB} + \overline{ABC} + \overline{\overline{A}B + C}$	
	(d)	Write the output equation for following and prepare the truth table of F1 for	5M
	()	possible values of X,Y and Z.	
		F1 F	
	(e)	Convert i) (C9.A2) ₁₆ to binary, octal and decimal	5M
		ii) (47.31) ₁₀ to hexadecimal	
	(f)	Draw and explain V to I converter using Op-amp	5M
Q.2	(a)	Draw and explain op-amp as Integrator. Also draw its input and output	10M
	(a)	waveforms with its frequency response	10111
	(b)	Implement the following function using 3 data select input multiplexer	10M
	` ´	$f(A,B,C,D) = \sum m(0,2,3,5,6,8,10,14)$	
0.0			103.5
Q.3	(a)	Give the block diagram of IC-555 and explain the function of each pin	10M 10M
	(b)	Convert i) JK Flip flop to T Flip flop ii) T to D Flip flop	TUIVI
25			
Q.4	(a)	Draw and explain First order Butterwoth Low Pass Filter with its practical	10M
	2000	frequency response.	
	(b)	Design 4 bit asynchronous counter using J-K flip flop	10M
Q.5	(a)	How op-amp can be used as Inverting Schimitt Trigger. Explain it with neat	10M
	(a)	diagram and waveforms.	TOIVI
	(b)	Simplify the following using K-map implement using gates	10M
		$f(A,B,C,D) = \sum m (0,2,3,5,9,13,14) + d(4,7,10)$	
Q.6	01 35 LS	Write short note on any TWO of the following.	20M
		X & 10 X X X X X X	_01,1
	(a) (b)	Shift Register Sample and Hold Circuit using Op-Amp	
	(c)	Binary to Gray Code converter	

71319 Page 1 of 1