Duration 3hrs Total Marks 80

NB:- 1)Question No. 1 is Compulsory.

- 2) Attempt any three Questions out of remaining five Questions.
- 3) Assume suitable data if necessary and justify the same.

Q.1		Answer any four out of five questions.	
	a b	Explain Coulomb's law in Electrostatics and hence define Unit Charge. Express the following vector in Cartesian co-ordinate system	05 05
		A=2 cos θ âr +3 r â θ - 4 âz State and explain relationship between Electric Intensity and potential.	05
	C d	What is Lorentz force equation for moving charge? Enlist two	05
	u	applications.	77.00
	e	Explain inconsistency in Ampere's circuital law	05
Q2	a	Show that electric field due to infinite sheet of charge at a point is independent of distance at that point from the plane containing the charge.	10
	b	Three equal point charges of 2 μ c are in free space at (0,0,0), (2,0,0), (0,2,0) respectively. Find net force on fourth charge of 5 μ C at (2,2,0)	10
Q3	a	Derive Poission's and Laplace equation. Two plates of a parallel capacitors are separated by a distance 'd' and maintained at potential 0 and $\mathbf{V_1}$ respectively. Find potential at any point between plates.	10
	b	Derive the set of Maxwell's equation for Static field and Time varying field	10
Q4	la	Explain Ampere circutal law and differentiate between conduction current and displacement current	10
	b	Find the capacitance of a co-axial conductor of length L, where inner and outer radius are r1 and r2 respectively	10
Q5	a	A current sheet $K^- = 10$ âz A/m lies in $X=4$ m plane and a second sheet $K^- = -8$ âz A/m is at $X=-5$ m plane. Find H^- at points (i) (1,1,1) (ii) (0, -3, 10)	10
	b	Derive magnetic field intensity due to finite and infinite wire carrying a current I.	10
Q6	a	Formulate the wave equation from Maxwell's equations for perfectly conducting medium	10
	b	Consider an interphase in Y- Z plane .The region $X<0$ is medium1 with $\mu_{r,1}=4.5$ and magnetic field, $\mathbf{H}=4$ â x+5 â y- 6 â z A/m. The region $X>0$ is medium 2 with $\mu_{r,2}=6$. Find \mathbf{H}_2 and \mathbf{B}_2 in medium 2 and	10
		also calculate the angle made by \mathbf{H}_2 with normal to interface.	
