[3 Hours] Maximum Marks: 80

Note: i) Question No. 1 is Compulsory

- Ii) Attempt Any Three questions from remaining
- Iii) Assume suitable data if necessary
- 1. Attempt the following:

(20)

- a) Find the condition of reciprocity for Transmission parameters.
- b) Define Transfer Function of a Network. What are the restrictions on Poles and Zeros location for transfer function?
- c) Write the mesh equations for the circuit shown in fig (a).
- d) For network given in fig (b) write:
 - i) Incidence Matrix
- ii) f-Cutset Matrix
- iii) Tieset Matrix

2. A) Calculate value of R_L for fig (c) getting maximum power. Also calculate Maximum Power.

(10)

- B) The network in fig (d) has acquired steady state before switching at t = 0.
 - i) Obtain $v_c(0^+), v_c(0^-), i(0^+)$ and $i(0^-)$
 - ii) Obtain time constant for t > 0 iii) Find current i(t) for t > 0 (10)

3. A) The circuit given in fig (e) is in steady state with S_1 closed and S_2 open. At t = 0, S_1 is opened and S_2 is closed. Find current through the capacitor. (10)

72805 Page **1** of **3**

B) Find Y –parameters for the network shown in fig (f).

4. A) For given network and pole zero diagrams for driving-point impedance Z(s) are shown below.

Fig (g)

Calculate the value of R,L, G and C if Z(j0) = 1.

(10)

(10)

B) Find Voltage across 5 ohms resistor using Mesh analysis. (10)

5. A) For the given network, mention tieset matrix and obtain the network equilibrium equations in matrix form using KVL. (10)

B) At t = 0, unit pulse voltage of unit width is applied to a series RL circuit as shown in fig (j). Obtain an expression for i(t).

72805 Page **2** of **3**

Paper / Subject Code: 40606 / Electrical Networks

C) Draw dual of the network shown in fig (k).

(4)

(6)

(6)

- 6. A) Using superposition theorem, find current 'I' through circuit shown in fig (l).
 - B) In the given fig (m), at t = 0 switch is opened. Calculate $v, \frac{dv}{dt}$ and $\frac{d^2v}{dt^2}$ at $t = 0^+$. (8)

C) The current I(s) in a network is given by:

 $I(s) = \frac{4S}{(S+2)(S+4)}$

Plot pole-Zero pattern in the S-plane and obtain i(t).

