Q.P. Code :24725

[Time: 03 Hours]

[Marks:80]

05

10

10

Please check whether you have got the right question paper.

- N.B: 1. Q.1 is compulsory.
 - 2. Attempt any three questions from remaining questions
 - 3. Assume suitable data wherever required.
- 05 **Q.1** If $x[n] = \{3, 2, 4\}$ $h[n] = \{1, 2, 3\}$ Find y[n] using circular convolution. a) 05
 - Prove any two properties of Fourier Transform b)
 - Find the Z transform of the given function $x(n) = (1/4)^n + u(n) + (1/5)^n u(-n-1)$ 05 c)
 - d) Check the linearity and Time variance property of the system $y[n] = x[n^2]$
- **Q.2** Find the even and odd components of $x[n] = \{-1, 7, -2, 3, -7, 6\}$ 05 a)
 - Find the initial value and final value of 05 b)

$$X(z) = \frac{2z^{-1}}{1 - 1.8z^{-1} \cdot 0.08z^{-2}}$$

An LTI system is described by the difference equation c) 2y(n) + 3y(n-1) + y(n-2) = u(n) + u(n-1) - u(n-2)

Find the response of the system when initial conditions are given

- y(-1) = 2, y(-2) = -1 and unit step is applied at the input.
- Explain all basic filters and plot their magnitude responses |H(w)| Q.3 10 a) 10
 - Identify the type of filter based on its pass band by analytical method. Draw pole-zero b)

$$H(Z) = \frac{1}{1 + 0.8z^{-1}}$$

Q.4 a)
$$H(Z) = \frac{(1-0.5Z^{-1})(1-Z^{-1})}{(1+0.2Z^{-1})(1+0.8Z^{-1})(1-0.8Z^{-1})}$$

- Give ROC condition i)
- Sketch pole Zero diagram ii)
- Find the response of the system iii)
- Comment on the stability iv)
- A continuous time signal x (t) is given below. Sketch the following Signals:
 - a) $x_1(t) = 2 x(t)$ b) $x_2(t) = x(t-3)$

 - c) $x_3(t) = x(t/2)$ d) $x_4(t) = x(2t)$

Page 1 of 2

Paper / Subject Code: 39004 / SIGNAL PROCESSING

Q.P. Code :24725

Q.5	a) b)	State sampling theorem. How aliasing occurs? How it can be eliminated? Derive and sketch the ROC of any three infinite duration signals. Also comment on stability.	10 10
Q.6	a)	An 8 point sequence is given by $x(n)=\{2,4,6,8,2,4,5,8\}$. Compute 8 point DFT of $x(n)$ by radix -2 DIT - FFT method.	10
	b)	Prove any four DFT properties	10
