Paper / Subject Code: 39005 / ANALOG AND DIGITAL INTEGRATED CIRCUITS 25662

[Time: 3 Hours] [Marks:80]

Instruction	3.

6.

40% duty cycle.

ii) Implement EX-OR using NOR gates.

1. Question no. 1 is **compulsory**.

	2. Answer any three from remaining.	
	3. Figures to the right indicate full marks.	
1.	Answer any FOUR of the following	20
i)	Compare sequential and combinational logic circuits	
ii)	Draw circuit and derive expression for op-amp as as an adder and subtractor.	
iii)	Define the terms w.r.t op-amp i) Slew rate ii) input offset voltage	
iv)	Convert the following:	
	i) (58) ₁₀ to Octal ii) (275B) ₁₆ to binary	
v)	Explain interfacing between TTL and CMOS logic families.	
2.	a)Explain briefly the operation of TTL NAND gate in tristate output configuration b) Draw and explain operation of R-2R ladder DAC. Derive the expressions for its	10
	output voltage. State its advantages and disadvantages.	10
3.	a) Illustrate with neat circuit diagram, operation of Op-amp as an instrumentation	10
	amplifier. Derive the expression for output voltage	
	b) Illustrate operation of Op-amp as basic integrator with circuit diagram. Draw	10
	input and output waveforms for input i) Triangular wave ii) square wave	~~
4.	a) Implement the following SOP expression using i)Two 8:1 multiplexer	10
	ii) One 8:1 multiplexer	
	$f(A,B,C,D) = \sum m(0,2,3,4,6,9,10,12)$	10
	b) Design 3-bit synchronous counter using JK flip flops.	
5.	a) Minimize the expression using K-map and realize using gates.	10
~-	$f(A, B, C, D) = \Sigma m(0,5,9,12,13,14,15) + d(1,2,3,4)$	
	b) Design a 3-bit binary to gray code converter and implement using EX-OR gates.	
	of Besign a 5 on omary to gray code converter and improment using EA-OR gates.	10

a) Design an astable multivibrator using IC 555 timer for 1 kHz frequency with 10

10

b) i) Simplify $Y = AB\overline{C} + A\overline{B}C + ABC + \overline{AB}C$ and implement using basic gates.