Paper / Subject Code: 31921 / Theoretical Computer Science | Time: 3.00 Hrs. Marks: 80 | Sty. Sty | |--|---| | N.B.: (1) Question No. 1 is compulsory. (2) Attempt any three questions out of the remaining five questions. (3) Assumptions made should be clearly stated. (4) Figures to the right indicate full marks. | Stripped at | | (5) Assume suitable data whenever required but justify the same. | | | 1. a) Differentiate between NFA and DFA.b) Compare and contrast Moore and Mealy machines.c) Explain variants of Turing Machine. | 5 5 | | d) Show that the following grammer is ambiguous : $S> aSbS \mid bSaS \mid \epsilon \qquad .$ | 3 3 5 | | 2. a) Convert the following RE into NFA with ϵ - moves and hence obtain the DFA RE = $(0 + \epsilon) (10) * (\epsilon + 1)$. | 10 | | b) Consider the following grammer $G = \{ V, T, P, S \}, V = \{ S, X \}, T = \{ a, productions P are : S> aSb aX X> Xa Sa a .$ | b } and | | Convert the grammer in Greibach Normal Form. | 10 | | 3. a) Construct PDA accepting the language L = { a²ⁿbⁿ n >= 0 }. b) Construct TM to check well formedness of parenthesis. | 10
10 | | 4. a) Design Mealy machine to recognize $r = (0 + 1) * (00 + 11)$ and then conver Moore machine. | t it to 10 | | b) Consider the following grammer: S> i C t S i C t S e S a C> b. | | | For the string "ibtaeibta", find the following: i) Left most derivation, ii) Right most derivation, | Zi
Line in the control of contro | | iii) Parse tree, iv) Check if the above grammer is ambiguous or not. | 10 | | 5. a) Design a Turing machine that computes a function f(m,n) = m + n, the addition integers. b) Give the formal definition of numbing lemma for regular language and then not be a function. | 10 | | b) Give the formal definition of pumping lemma for regular language and then p the following language is not regular : $L = \{ \ 0^m 1^{m+1} \mid m>0 \ \} \ .$ | rove that | | | | | 6. Write short note on following (Any two): a) Chomsky Hierarchy. b) Decision properties of regular languages. c) Rice's theorem. d) Definition and working of PDA. | 20 | | | | 12579