Program: BE Computer Engineering

Curriculum Scheme: Revised 2016

Examination: Second Year Semester IV

Course Code: CSC401 and Course Name: Applied Mathematics IV

Q1.	The Eigen values of $4A^{-1} + 2A + 3I$ where $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ are							
Option A:	9,12							
Option B:	9,15							
Option C:								
Option D:	8,13							
Q2.	A test is conducted for H_0 : $\mu=20$ with $\sigma=4$, a sample of size 36 has $\overline{x}=21.4$ then the test statistics is							
Option A:	0.35							
Option B:	2.1							
Option C:	12.9							
Option D:	1.29							
Q3.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ then the minimal polynomial is							
Option A:	$f(x) = x^2 - 1$							
Option B:	$f(x) = x^2 + 1$							
Option C:	$f(x) = x^2 + x - 1$							
Option D:	f(x) = x - 1							
Q4.	The value of the integral $\int_0^{1+i} (x^2-iy)dz$ along the path $y=x$ is							
Option A:	$\frac{5}{6} + \frac{i}{6}$							
Option B:	$\frac{1}{6} + \frac{5i}{6}$							
Option C:	$\frac{1}{6} + \frac{i}{6}$							
Option D:	$\frac{5}{6}$ $\frac{i}{6}$							

Q5.	The Dual of the LPP $Min\ z = x_1 + 2x_2$					
	$S.t \qquad 3x_1 - 2x_2 \ge 4$					
	$x_1 + 7x_2 \ge 2$					
	$x_1, x_2 \geq 0$					
Option A:	$Max \ w = \ y_1 + 2y_2$					
	$S.t 4y_1 + 2y_2 \le 2$					
	$-2y_1 + 7y_2 \le 3$					
	$y_1, y_2 \geq 0$					
Option B:	$Min w = 4y_1 + 2y_2$					
	$S.t 43y_1 + 2y_2 \ge 2$					
	$-2y_1 + 7y_2 \ge 3$					
	$y_1, y_2 \ge 0$					
Option C:	$Min \ w = y_1 + 2y_2$					
E. C.	$S.t 4y_1 + 2y_2 \ge 2$					
45 45 45 45 45 45 45 45 45 45 45 45 45 4	$-2y_1 + 7y_2 \ge 3$					
	$y_1, y_2 \ge 0$					
Option D:	$Max w = 4y_1 + 2y_2$					
	$S.t 3y_1 + y_2 \le 1$					
	$-2y_1 + 7y_2 \le 2$					
	$y_1, y_2 \ge 0$					
	\$\forall \chi_k\chi_\chi_\chi_\chi_\chi_\chi_\chi_\chi_					
Q6.	The mean and variance of a Binomial variate are 3 and 1.2 then $oldsymbol{n}=$					
Option A:	300					

Option B:	4							
Option C:	5							
Option D:								
-								
Q7.	A continuous random variable X has the following probability density							
	function $f(x) = k(x + x^2)$, $0 \le x \le 2$ then $k = x$							
Option A:	3/14							
Option B:	14/3							
Option C:	<u> </u>	4/27						
Option D:	1/14							
Q8.	The function $f(z)=rac{1}{(z-1)^2(z+2)^3}$ has							
Option A:	Poles of ord	er 2 at $z = -$	2 and a pole of o	order 3 at $z=1$				
Option B:	<u> </u>	Poles of order 2 at $z = -2$ and a pole of order 3 at $z = 1$ Poles of order 2 at $z = 1$ and a pole of order 3 at $z = 2$						
Option C:		4 × Y = A × X	and a pole of or	7 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
Option D:	Poles of ord	Poles of order 2 at $z = 1$ and a pole of order 3 at $z = -2$						
Q9.	If the basic va	If the basic variable satisfies the non-negativity constraint, then solution is						
Option A:	Degenerate							
Option B:	Feasible							
Option C:	Non-Degener	ate						
Option D:	Non-Feasible							
		282500						
Q10.	Based on the following data the calculated value of χ^2 is							
		Smokers	Non-Smokers	Total				
	Literates	83	57	140				
	Illiterates	46	68	114				
	Total	129	125	254				
Option A:	2.56							
Option B:	9.1691							
Option C:	6.35							
Option D:	11.31							

Solve any FOUR out of SIX. Each question carries 05 marks $ \text{Verify Cayley-Hamilton theorem for the matrix } A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} \text{ and hence find } A^{-1} $						
Evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the circle $ z = 3$.						
Monthly salaries of 1000 workers have a normal distribution with mean 575 and a standard deviation of 75. Find the number of workers having salaries between 500 and 625 per month. Also find the minimum salary of the highest paid 200 workers.						
Use Kuhn Tucker Method to solve the NLPP $Max\ z = 2{x_1}^2 - 7{x_2}^2 - 16x_1 + 2x_2 + 12x_1x_2 + 7$						
$S.t 2x_1 + 5x_2 \le 105$ $x_1, x_2 \ge 0$						
Determine all basic feasible solutions to the following problem						
$Max z = x_1 - 2x_2 + 4x_3$						
$S.t x_1 + 2x_2 + 3x_3 = 7$ $3x_1 + 4x_2 + 6x_3 = 15$						
$x_1, x_2, x_3 \ge 0$						

Q3(20	Solve any FOUR out of SIX. Each question carries 05 marks								
MARKS)									
А	$If A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix} \text{ find } A^{50}$								
В	Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3sin\theta}$								
С	A discrete random variable has the probability density function given be								
	x	-2	-1	0	1	2	300		
	P(X=x)	0.2	k	0.1	2 <i>k</i>	0.1	2k		
	Find k , mean and Variance								
D	Solve by Sim	Solve by Simplex Method $Max z = 7x_1 + 5x_2$							
	$S.t \qquad x_1 + 2x_2 \le 6$								
	$4x_1 + 3x_2 \le 12$								
	$x_1, x_2 \geq 0$								
E	The means of two random samples of size 9 and 7 are 196.42 and 198.82 respectively. The sum of the squares of the deviations from the means are 26.94 and 18.73 respectively. Can the samples be considered to have been drawn from the same population?								
F	Evaluate $\int_C \frac{1}{z^4}$	$\frac{(z+4)^2}{+5z^3+6z^2}dz$	where C is	the circle z	r = 1.				

Q4(20 MARKS)	Solve any FOUR out of SIX. Each question carries 05 marks							
A	Prove that $A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonalizable. Find the diagonal form D and the diagonalizing matrix M.							
В	Find the Laurent's series for $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ valid for $2 < z < 3$.							
С	Fit a Poisson	distribution t	o the follow	ing data				
	X	0	1	2	3	4	TOTAL	
	f	122	60	15	2	1	200	
	Solve by Big M Method $Max\ z=3x_1+2x_2$ $S.\ t \qquad 2x_1+x_2\leq 2$ $3x_1+4x_2\geq 12$ $x_1,x_2\geq 0$							
E	A continuous random variable has the following probability density function $f(x) = \begin{cases} ke^{-kx}, x > 0, k > 0 \\ 0 & elsewhere \end{cases}$ Find m.g.f and hence find the mean and variance.							
F	The number of car accidents in a metropolitan city was found to be 20,17,12,6,7,15,8,5,16 and 14 per month respectively. Use χ^2 test to check whether these frequencies are in agreement with the belief that occurrence of accidents was the same during 10 months period. Test at 5% level of significance.							