Time:3Hours Max. Marks: 80

N.B.

- 1) **Q.1** is compulsory.
- 2) Solve any 3 questions out of remaining 5 questions.
- 3) Assumptions made should be clearly stated.
- 4) Draw the figures wherever required.

Q.1 Solve any four of the following questions.

a) Check if $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is a tautology?

5

b) Draw the Hasse diagram for [{2,4,5,8,10,12,20,25}, /]. Is it a Poset?

5

- c) Define Eulerian and Hamiltonian Graph. Give examples of following type of graph 5
 - i) Eulerian but not Hamiltonian
 - ii) Not Eulerian but Hamiltonan
- d) Explain types of Quantifiers . Represent the following sentences using Quantifiers i) All hardworking students are clever.
 - ii) There is a student who can speak Hindi but does not know Marathi
- e) State the Pigeonhole principle and prove that in any set of 29 persons at least five persons must have been born on the same day of the week

5

Q.2

a) Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a*b=(ab)/2

10

a) What is a transitive closure? Explain Warshall's algorithm for finding transitive closure with an example.

10

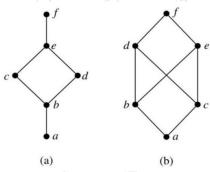
Q.3

a) By using mathematical induction, prove that the given equation is true for all positive integers.

 $1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + (2n - 1) \times 2n = n(n+1)(4n-1)/3$

b) Define Lattice? Which of the following is lattice?

8



c) Determine the sequence of which recurrence relation is $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 1.5$, $a_2 = 3$.

Q.4

a) Let $A = \{1, 3, 6, 9, 15, 18, 21\}$ & R be the relation of divisibility.

8

- i) Write the pairs in a relation set R.
- ii) Construct the Hasse diagram.
- iii) What are the Maximal and Minimal elements?
- iv) Is this poset a distributive lattice? Justify your answer.

b)

6

Let
$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Determine (3, 6) group code $e_H : B^3 \to B^6$

c) Write a short note on Types of Graphs.

6

Q.5

a) Let(Z,*) be an algebraic structure, where Z is set of integers and the operation * is defined by a*b= maximum of (a,b). Is (Z,*) a Semigroup? Is (z,*) a Monoid? Justify your answer.

8

b) Define the term Surjective function. Let E be the set of all even numbers then f: N-->E:f(x)=2x , check if it is surjective, bijective? Justify your answer.

-

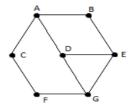
c) Give the examples of relation R on $S = \{a, b, c, d\}$ having stated property.

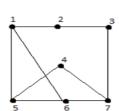
8

- i) R is an equivalence relation.
- ii) R is symmetric but not transitive
- iii) R is both symmetric and antisymmetric
- iv) R is neither symmetric nor antisymmetric.

. %

a) Define Isomorphic graphs and check whether the following graphs are Isomorphic? 8





- b)In a group(G,*), Prove that the inverse of any element is unique and identity element is also unique.
 - 6

c) Define Relation. Let

6

f: $R \rightarrow R$ is defined as $f(x) = x^2$

g: $R \rightarrow R$ is defined as $g(x) = 3x^2 + 1$ h: $R \rightarrow R$ is defined as h(x) = 9x - 2

find (hof)og, go(foh).
