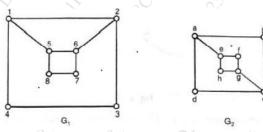
Paper / Subject Code: 50922 / Discrete Structures & Graph Theory


(3 Hours) Total Marks: 80

- N.B.: (1) Question Number 1 is compulsory
 - (2) Solve any three questions from the remaining questions
 - (3) Make suitable assumptions if needed
 - (4) Assume appropriate data whenever required. State all assumptions clearly.
- a. Define the following with suitable example

 a)Ring
 b) Cyclic Group
 c) Monoid
 d)Normal Subgroup
 e) Planar Graph
 - b. Check whether $[(p\rightarrow q) \land \neg q] \rightarrow \neg p$ is a tautology
 - c. Determine the number of positive integers n where $1 \le n \le 100$ and n is not divisible by 2,3 or 5.
 - d. Prove by mathematical induction that 2+5+8+....+(3n-1)=n(3n+1)/2
- 2 a Define Equivalence Relation. Let A be a set of integers, Let R be a Relation on AXA defined by (a,b) R (c,d) if and only if ad = bc. Prove that R is an Equivalence Relation
 - b. Let A={a, b, c, d, e}

Find the transitive closure of it using Warshall's algorithm.

- c Let G be a group. Prove that the identity element 'e' is unique.,
- 3 a Prove that set $G = \{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication module 7
 - b Give the exponential generating function for the sequences
 - i) {1,1,1...} ii) {0,1,0,-1,0,1,0,-1...}.
 - c Determine whether the following graphs are isomorphic. Justify your answer.

4. a A Function $f: R - \begin{Bmatrix} 7 \\ 3 \end{Bmatrix} \rightarrow R - \begin{Bmatrix} 4 \end{Bmatrix}$ is defined as f(x) = (4x - 5)/(3x - 7)Prove that f is Bijective and find the rule for f⁻¹

30226

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory

	b	Show that (2,5) encoding function $e:B^2 \to B^5$ defined by $e(00)=00000$ $e(01)=01110$ $e(10)=10101$	\$100 8
		e(11)=11011 is a group code.	
	c	Check whether Euler cycle and Euler Path exist in the Graph given below. If yes Mention them	_4
			SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOLD
5.	a	Consider the Set A={1,2,3,4,5,6} under multiplication Modulo 7. 1) Prove that it is a Cyclic group.	8
	b	2) Find the orders and the Subgroups generated by {2,3}and {3,4} State and explain the extended Pigeonhole principle. How many friends must you have to guarantee that at least five of them will have birthdays in the same month.	8
	C	Functions f,g,h are defined on a set $X=\{a,b,c\}$ as $f=\{(a,b),(b,c),(c,a)\}$ $g=\{(a,b),(b,a),(b,b)\}$ $h=\{(a,a),(b,b),(c,a)\}$ i) Find fog, gof . Are they equal? ii) Find fogoh and fohog?	4
6 .	a	Draw the Hasse Diagram of \mathbf{D}_{72} and \mathbf{D}_{105} and check whether they are Lattice.	8
	b	Define Bounded Lattice and Distributive Lattice. Check if the following diagram is a Distributive Lattice or not	8
	c	Define the following with suitable example. a)Hamiltonian path b) Euler Circuit c) Sub Lattice d)Group e) Surjective Function	4

30226