Total Marks:80

[6]

Duration: 3Hrs

- NB 1. Question No.I is compulsory.
 - 2. Attempt any **three** from the remaining six questions.
 - 3. Figures to the right indicate full marks.

Q1a. If
$$L\{tsin\omega t\} = \frac{2\omega s}{(s^2 + \omega^2)^2}$$
, find $L\{\omega tcos\omega t + sin\omega t\}$ [20]

- b. If $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ is analytic, find a,b,c and d
- c. **Find** the Fourier series expansion of $f(x) = x^3 (-\pi, \pi)$
- d. If the two regression equations are 4x 5y + 33 = 0, 20x 9y 107 = 0 find i) the mean values of x and y
 - ii) the Correlation Coefficient iii) Standard deviation of y if variance of x is 9
- Q2 a. Show that the function is Harmonic and find the Harmonic Conjugate

$$u = cosx coshy - 2xy$$
 [6]

b. Evaluate
$$\int_0^\infty e^{-t} \left(\int_0^t u^2 \sinh u \cosh u \, du \right) dt$$
) using Laplace Transform. [6]

c. Find Fourier Series expansion of
$$f(x) = x$$
 $-1 < x < 0$ $= x + 2$ $0 < x < 1$ [8]

Q3 a. Find the Analytic function
$$f(z) = u + iv$$
 if $u - v = e^{x}(cosy - siny)$ [6]

b. Find Inverse Z transform of
$$\frac{5z}{(2z-1)(z-3)}$$
 $\frac{1}{2} < |z| < 3$ [6]

c. Solve the Differential Equation using Laplace transform

$$(D^2 - 2D + 1)y = e^t$$
, $y(0) = 2$, $y'(0) = -1$ [8]

- Q4 a. Find the Complex Form of Fourier Series for $f(x) = \cos \alpha x \ (-\pi, \pi)$ [6]
 - b. Find the Spearman's Rank correlation coefficient between *X* and *Y*.

À		68	64	75	50	64	80	75	40	55	64
966	Ŷ	62	58	68	45	81	60	68	48	50	70

c. Find the inverse Laplace transform of i)
$$\frac{s-1}{s^2+2s+2}$$
 ii) $\frac{e^{-\pi s}}{s^2(s^2+1)}$ [8]

76058

Q5 a. Find the
$$Z\{f(k)\}$$
 where $f(k) = 4^k$, $k < 0$
= 3^k , $k \ge 0$

- b. Show that $\{cosx, cos2x, cos3x, \dots \}$ is orthogonal set over the interval $[0,2\pi]$. Construct the corresponding orthonormal set.

[6]

[8]

- c. Find the bilinear transformation which maps the points z = 1, i, -1 into the points w = i, 0, -i, Hence find the image of |z| < 1.
- Q6 a. Fit a straight line to the given data [6]

Ī	X	10	12	2 15	23	20
	Y	14	378	23	25	21

- b. Find Inverse Laplace Transform using Convolution theorem $\frac{1}{(s-2)^3(s+3)}$ [6]
- c. Find Half Range Cosine Series for f(x) = sinx in $(0,\pi)$ and hence deduce that $\frac{\pi^2 8}{16} = \frac{1}{1^2 \cdot 3^2} + \frac{1}{3^2 \cdot 5^2} + \frac{1}{5^2 \cdot 7^2} + \cdots \dots$ [8]
