Γime Duration: 3Hr		Total Marks: 80
	N.B.:1) Question no.1 is compulsory. 2) Attempt any three questions from Q.2to Q.6. 3) Figures to the right indicate full marks.	
Q1. a)	Find the Laplace transform of $e^{-4t}t\sin 3t$.	
b)	Find the half-range cosine series for $f(x) = x$, $0 < x < 2$.	[5]
c)	Find $\nabla \cdot \left(r \nabla \frac{1}{r^3}\right)$.	5P 7
d)	Show that the function $f(z) = \sin z$ is analytic and find $f'(z)$ in terms of z.	[5]
Q2. a)	Find the inverse Z-transform of $F(z) = \frac{1}{(z-5)^3}$, $ z < 5$.	[6]
b)	Find the analytic function whose imaginary part is $e^{-x}(y \sin y + x \cos y)$.	[6]
c)	Obtain Fourier series for the function $f(x) = x + x^2$, $-\pi \le x \le \pi$ at $f(x + 2\pi) = f(x)$.	
	Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ and $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$	
Q3. a)	Find $L^{-1}\left[\frac{1}{(s-a)(s-b)}\right]$ using convolution theorem.	[6]
	Is $S = \left\{ \sin\left(\frac{\pi x}{4}\right), \sin\left(\frac{3\pi x}{4}\right), \sin\left(\frac{5\pi x}{4}\right), \dots \right\}$ orthogonal in $(0, 1)$?	[6]
c)	Using Green's theorem in the plane evaluate $\int_{c} (xy + y^{2})dx + (x^{2})dy$ where is the closed curve of the region bounded by $y = x$ and $y = x^{2}$.	C [8]
Q4. a)	Find Laplace transform of $f(t) = \begin{cases} \sin 2t & \text{, } o < t \le \frac{\pi}{2} \\ 0 & \text{, } \frac{\pi}{2} < t < \pi \end{cases}$ and	[6]
b)	$f(t) = f(t + \pi)$. Prove that a vector field \overline{f} is irrotational and hence find its scalar potential $\overline{f} = (x^2 + yy^2)$;	[6]
c)	$\bar{f}=(x^2+xy^2)i+(y^2+x^2y)j$. Find the Fourier expansion for $f(x)=\sqrt{1-\cos x}$ in $(0,2\pi)$. Hence deduces	ce [8]
Se Se	that $\frac{1}{2} = \sum_{1}^{\infty} \frac{1}{4n^2 - 1}$.	
Q5.a)	Use Gauss's Divergence Theorem to show that $\iint_{S} \nabla r^{2} \overline{ds} = 6V$ where S is an	_{1V} [6]
95 N. 183	closed surface enclosing a volume V.	-7
b)	Find the Z-transform of $f(k) = b^k$, $k < 0$.	[6]
c)	i) Find $L^{-1} \left[\frac{s}{(s-2)^6} \right]$.	[8]
	ii) Find $L^{-1} \left[\log \left(1 + \frac{a^2}{s^2} \right) \right]$.	
Q6.a)	Solve using Laplace transform	[6]
7 6 6 B	$(D^2 + 9)y = 18t$, given that $y(0) = 0$ and $y(\frac{\pi}{2}) = 0$	
7276	Find the hillinear transformation which mans the points $7-\infty$ in 0 onto	[6]

67960

W=0, i, ∞.

[8]

c) Find Fourier integral representation of $f(x) = e^{-|x|} - \infty < x < \infty$.