Paper / Subject Code: 81903 / Business Statistics.

	Time	: 2:30 hours	rks: 7
Note:	1) All Questions carry equal marks of 15 each.		DVV.
	2) Graph papers will be provided on request.		0, 4 C
	3) Use of Non-Programmable Calculators is allowed.		V W C
	4) Figures to the right indicate full marks.		0,00
	5) In Q no. 1 attempt both the sub parts A and B.		3,00
Q1a) F	ill in the blanks (any 8 out of 10)	8q.x.1m = 8m	300
i.	The data collected for the first time is known asdata)	. (Secondary data, Primary Dat	a, Rav
ii.	The middlemost observation, dividing the entire distri . (Mean, Median, Mode)	bution into two equal parts is known as	
iii.	If the values of Arithmetic Mean and Median are 34.5 can be (33.3, 40.2, 35)	and 34.1 respectively, then the value of mo	ode
iv.	The diagram used to get rough idea about relationship . (Scatter Diagram, Pie Diagram, Bar		
٧.	The Co-efficient of Correlation always lies between		
	(Increasing,		
vi.	The Correlation Co-efficient is of F	Regression Co-efficients.	
	(Arithmetic Mea	n, Geometric Mean, Weighted mean)	
vii.	The method used to derive regression constants of a r	egression equation is known as	·
	(Product moment, Least Squares, Moving average)	2552 2 E E E E E E E E	
viii.	There are components of a time series. (3, 4	,5)	
ix.	Least Square Method is used to compute	2.4. 4.4.6.6.6.6.	
	(Non Linear Trend, Linear Trend, Seasonal trend)		
х.	The variation occur due to seasonal cha	nges in a time series.	
	(Seasonal, Cyclic, irregular)		
lb) Sta	te True or False for any Seven out of Ten .	7q x 1m	= 7m
i) 1	The Histogram can be used to locate graphically the valu	ie of Median.	
ii)	The suitable measure of dispersion to indicate extreme	variations in the data is Range.	
iii)	If the value of co-efficient of variation is more, the con-	sistency of the data is more.	
iv)	An occurrence of an outcome to any statistical experim	ient is called Sample Space.	
v)	The family Budget Method is used to calculate the Chai	Base Index Numbers.	
vi)	Future trend values can be estimated with the help of	Straight Line Trend.	
vii)	If the two regression coefficients are negative, then t positive.	he value of the correlation co-efficient will	be
100) While calculating rank correlation co-efficient, if the v then the values of variable y must be ranked in increasi	_	order
ix)	If two variables x and y are highly correlated then Y car Regression Equation of Y on X.	be estimated for a given value of X using	
(x)	Mean Deviation is a Relative Measure of Dispersion.		
²a) Re _l	present the following data by a Subdivided Bar Diagram		(7m)

6.47						
300	Year					
Exports	1995	2000	2005			
Food & Drinks	25	32	35			
Raw Materials	18	20	30			
Miscellaneous	12	15	18			
Total	55	67	83			

59837 Page **1** of **3**

2b) Calculate Median for the following data and locate it graphically

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 – 50
No of Students	18	22	30	28	15

(OR)

2p) The Regional percentage of viewers for a popular TV Serial on DD Metro Channel for 3 months are as follows. Represent the following data by Multiple Bar Diagram. (7m)

Month	North	South	West	East
April, 2012	40	45	32	25
May, 2012	50	55	40	30
June, 2012	45	49	38	38

2q) Calculate Arithmetic Mean and Mode from the following data.

(8m)

(8m)

Height	120 - 125	125 - 130	130 - 135	135 - 140	140 - 145	145 – 150
No of Children	7	10	18	25	1300	\$ 07\V

3a) Calculate Mean Deviation from Mean and its Co-efficient for the following data.

(8m)

Age	20 - 22	22 - 24	24 - 26	26 - 28	28 - 30	30 - 32	32 – 34
No of Employees	70	90	110	140	130	80	80

3b) Calculate Correlation Co-efficient for the following data.

(7m)

1/1	Ç X	17	8	12	13	10	12
Ź	Y.	13	3	10	11	8	9

(OR)

3p) Find Standard Deviation and Co-efficient of Variation for the following data.

(8m)

S	Marks	0 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 – 50
	No of Students	16	28	42	30	18	14

3q) Calculate Regression Equation of y on x for the following data. Also Estimate y when x = 70. (7m)

X	54	65	75	82	57	59	60	64	58	62
y y	58	67	76	80	60	64	65	65	60	70

4a) Calculate Fishers Index Number for the following data. Also construct Cost of Living Index Number using Aggregate Expenditure Method. (8m)

190×100000	Bas	se Year	Current Year		
Commodities	Price	Quantity	Price	Quantity	
Rice	4	15	5	20	
Pulses	8	20	12	30	
Sugar	6	25	8	20	
S Oil	6	3	8	4	
Milk	14	2	20	3	

59837 Page **2** of **3**

4b) Calculate Five Yearly Moving Averages and represent it graphically.

(7m)

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Exports	51	53	50	57	60	55	59	62	68	70	72

(OR)

4p) Calculate Chain Base Index Numbers for the following data.

(7m)

Year	2000	2001	2002	2003	2004
Prices	15	18	25	32	40

4q) Fit a Straight Line Trend for the following Time Series and represent it graphically.

(8m)

Year	2010	2011	2012	2013	2014	2015	2016	2017
Imports	87	90	92	98	105	93	100	110

5a) For the following probability distribution, obtain i) P(X > 2) ii) $P(X \le 1)$ iii) P(X = 2 or 3)

iv) E(X) v) V(X)

(7m)

X	-2		0	215	2	30
P(x)	0.1	0.2	0.2	0.3	0.15	0.05

5b) For the following Payoff table, find the optimal decision using Laplace Criterion and Minimax Regret Criterion

(8m)

Course of	States of Nature				
Action	S1 -	S2	S3		
A1	100	150	190		
A2	350	200	0		
A3	-50	160	400		

(OR)

5p) Write short notes on any three out of five.

 $(3q \times 5m = 15m)$

- i. Components of Decision Making
- ii. Sources of collection of Primary Data
- iii. State the Additive Law of Probability. How will the statement of the theorem be modified if the two events are Mutually Exclusive and Complimentary Events
- iv. Components of Time Series
- v. Distinguish between: Qualitative & Quantitative Data; Class Limits & Class Boundaries

59837 Page **3** of **3**