Duration: 3 Hours Marks: 100 N.B. 1) All questions are compulsory. 2) Figures to the right indicate full marks. 3) Use of calculator is allowed. Define the following terms with suitable example Simple Hypothesis **Null Hypothesis** ii. iii. Critical region iv. Type I error Power of the test State and prove Neyman-Pearson Lemma for obtaining the best test for testing simple Null hypothesis against simple alternative hypothesis. I) A Random variable X has the following p.d.f $f(x) = \begin{cases} \frac{1}{2}, & \theta - 1 \le x \le \theta + 1 \\ 0 & \text{otherwise} \end{cases}$ to test the hypothesis H_0 : $\theta = 4$ against H_1 : $\theta = 5$. Determine the value of 'c' if the critical region is given by x > c. $\alpha = 0.025$. Also calculate the II) If $x \ge 1$ is the critical region for testing H_0 : $\theta = 2$ against H_1 : $\theta = 1$ based [05] on a single observation from a population with p.d.f $f(x,\theta) = \begin{cases} \theta e^{-\theta x}; & x \ge 0, \theta > 0 \end{cases}$ Calculate size and power of the test. Derive the Most powerful test of size α for testing $H_0: \theta = \theta_0$ against [10] $H_1: \theta = \theta_1$ when a sample of size n is taken from Bernoulli (θ) for the following cases. Case (i) $\theta_0 < \theta_1$ Case (ii) $\theta_0 > \theta_1$ Define Uniformly Most Powerful Test (UMPT). Obtain UMPT of size α [10] to test $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_1$, where X_1, X_2, \ldots, X_n is a random sample of size n drawn from $N(0,\theta)$. I) Define Likelihood Ratio Test (LRT) and write down its procedure. (07)II) Comment: Level of significance is always equal to the probability of type I error. (03)Obtain UMPT of size α to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where X_1 , [10] X_2, \ldots, X_n is a random sample of size n drawn from Exponential $(\text{mean} = \frac{1}{\rho}).$ I) $\theta_1 > \theta_0$ II) $\theta_1 < \theta_0$ Let X_1, X_2, \ldots, X_n be a random sample drawn from $N(\mu, \sigma^2)$ [10] population where σ^2 is known. Derive LRT to test H_0 : $\mu = \mu_0$ against

 $H_1: \mu \neq \mu_0.$

Q.3]	a)	Discuss the test procedure of Sequential Probability Ratio Test (SPRT) for testing a simple null hypothesis against a simple alternative hypothesis.	[10]
		Differentiate between Sequential test procedures with Neyman Pearson's test procedure.	
	b)	Construct SPRT of strength (α, β) for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ $(\theta_1 < \theta_0)$, when a random variable X follows Binomial distribution with parameters (k, θ) .	[10]
		$\frac{\mathbf{OR}}{\mathbf{OR}}$	
	p)	A random variable X follows a Poisson distribution with parameter λ Derive SPRT of strength (α, β) to test the hypothesis H_0 : $\lambda = \lambda_0 \text{ v/s } H_1$: $\lambda = \lambda_1, (\lambda_0 > \lambda_1)$.	[10]
	q)	Construct SPRT of strength (α, β) for testing $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$, $(\mu_0 > \mu_1)$ from $N(\mu, \sigma^2)$, where σ^2 is known.	[10]
Q.4]	a)	Stating the assumption clearly, explain the Sign test for single sample. Also explain the Normal approximation for sign test.	[12]
	b)	Explain the median test for two independent samples. OR	[08]
	p)	I) Explain Wilcoxon matched pair signed rank test for two related samples.II) Explain the Wald-Wolfowitz Run test.	(05) (05)
	q)	Explain Kruskal Wallis one way ANOVA by Ranks test stating all the assumptions.	[10]
Q.5]		Attempt Any Two sub questions)`
	a)	Define the following terms with suitable example 1. Alternative hypothesis	[10]
		2. Type II error3. P-value	
		4. One sided test	
	£ 5	5. Acceptance region	
	b)	Let X_1, X_2, \ldots, X_n be a random sample drawn from $N(\mu, \sigma^2)$ population where μ is known. Derive LRT to test $H_0: \sigma^2 = \sigma_0^2$ against	[10]
		$H_1: \sigma^2 \neq \sigma_0^2.$	
	c)	A random variable X follows an Exponential distribution with unknown parameter θ . Derive SPRT of strength (α, β) for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ $(\theta_1 < \theta_0)$.	[10]
	d)	Explain Friedman Two way ANOVA by ranks test stating the assumptions	[10]