N.B.(i) All questions are compulsory.

(ii) Figures to the right indicate full marks.

Time: 3 Hours Marks: 100

(a) Suppose (X, Y) follows Bivariate Normal Distribution with parameters (10) Q.1 $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, derive marginal distribution of X and marginal distribution of Y

(b) Suppose (X, Y) follows Bivariate Normal Distribution with parameters $(0, 0, 1, 1, \rho)$. Obtain its joint MGF and hence marginal distributions of X and Y.

OR

- (p) Define fisher's Z transformation and explain its use in testing (10
 - i. H_0 : $\rho = \rho_0$ against H_1 : $\rho > \rho_0$
 - ii. H_0 : $\rho = \rho_0$ against H_1 : $\rho < \rho_0$
 - iii. H_0 : $\rho = \rho_0$ against H_1 : $\rho \neq \rho_0$ for large samples, in case of bivariate normal population.

Also obtain 95% confidence interval for ρ.

- (q) Let X, Y and Z be i.i.d. Normal(0,1). (10)
 - i. Show that Joint distribution of U = X + aZ and V = Y + aZ is Bivariate Normal.
 - ii. In above example, find 'a' such that correlation coefficient between U and V is $\frac{1}{2}$
- Q.2 (a) Let X be a discrete r.v. such that $P(X=n) = P_n$ n = 0,1,2... (10) Obtain generating functions of the following sequences.
 - i. $q_n = p(X \ge n)$
 - ii. $q_n = p(X < n)$
 - (b) i. Define Probability Generating Function (PGF) of discrete random variable assuming integral values (02)
 - ii) Obtain PGF of Negative Binomial distribution and hence derive its mean and variance. (08)

OR

- (p) i. A uniform die is thrown. Let X denote number on uppermost face of a die. Find (04) PGF of X.
 - ii. Bernoulli trial is repeated till success is occurred K times. Let X be the number (06) of tra=ilas required to get kth success. Obtain PGF of X and mean.
- (q) i. Let $x_1, x_2, ..., x_n$ be n independent random variables with PGFs $P_1(S)$, $P_2(S)$, (10) ..., $P_n(S)$ respectively. Obtain the PGF of $\sum x_i$.
 - ii. Let U(S) and V(S) be the generating functions of two independent random variables, respectively. Obtain the generating functions of (a) X + Y and (b) X Y

23736

Q.3	(a)	In the usual notations, for	Poisson bi	rth process	s, list the p	ostulates,	state the	(10)
		expression $P_n(t)$, the proba	bility of 'n'	numbers in	the system	at time 't'	and find	
		its mean and variance.			\$			

(b) Stating clearly postulates for the pure death process, with initially 'i' members in the system at time t=0. Derive the difference differential equation for $\mu_n = n\mu$ and find the expression for the probability of 'n' numbers in the system at time 't'.

OR

- (p) For linear growth model having birth rate $(n\lambda)$ and death rate $(n\mu)$ and initially (10) at time t=0, there are 'a' member in the system then
 - i. List the Postulates.
 - ii. Derive difference differential equation.
- (q) In usual notation for Poisson death process, list the postulates, state the expression (10) for $P_n(t)$, probability that 'n' members in the system at time 't'. Find its mean and variance.
- Q.4 (a) Define the following terms; (1)
 - (i) Input Process
 - (ii) Server and customer
 - (iii) Reneging
 - (iv) Jockeying
 - (v) Balking
 - (b) Show that for a single service station with Poisson arrival and exponential service (10) time the probability that exactly 'n' calling units are in the queue system is,

$$P_n = (1 - \rho)\rho^n \quad ; n \ge 0$$

Where, ρ is the traffic intensity.

OR

- (p) For $\{(M/M/I) : (N/FIFO)\}$ queueing model, derive the expression for P_n and find E(n).
- (q) Discuss the classification of queuing model, and operating characteristics of queueing system. (10)

Q.5 Attempt **Any Two** sub questions

23736 Page 2 of 3

Paper / Subject Code: 88607 / Statistics: Distribution Theory Stochastic Process

- (a) Show that (X, Y) follows Bivariate Normal Distribution with parameters $(\mathbf{10})$ $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ if and only if every linear combination of X and Y viz. ax+by, $a\neq 0$, $b\neq 0$, is a Normal Variate. Where a and b are constants.
- (b) Let X be a r.v. assuming values 0, 1, 2, with probabilities p_0 , p_1 , p_2 , Let qj = P(X > j) and pj = P(X = j), j = 1, 1, 2, ... Assuming actual notations, show that $Q(S) = \frac{1 P(S)}{1 S}$ where $Q(S) = \sum_{j=0}^{\infty} q_j S^j$ and $P(S) = \sum_{j=0}^{\infty} p_j S^j$. Also obtain mean and variance of X in terms of Q.
- (c) For pure birth process, if the growth rate λ_n is directly proportional to the number (10) of individuals $(n \ge 1)$ say $\lambda_n \propto n$, assuming no death or removal and initially at time t=0, there are 'i' members in the system, then
 - i. Obtain difference differential equation.
 - ii. Find $P_n(t)$
- (d) What are the service disciplines? Describe some forms of common service

 (10)

 Disciplines and illustrate with examples.