Time: 3 hrs.

M. M.: 100

N.B.		
1	. All questions are compulsory.	
2	. Figures to the right indicate full marks.	
3	. Draw neat diagrams wherever necessary .	
4	. Symbols have usual meaning unless otherwise stated.	
5	. Use of non-programmable calculator is allowed.	
Cons	stants: Planck's constant (h) = $6.64 \times 10^{-34} \text{ J-s}$;	
	Mass of an electron $(m_e) = 9.10 \times 10^{-31} \text{Kg} = 0.00055 \text{ amu}$	
	Charge on electron (e) = $1.60 \times 10^{-19} \text{ C}$	
	Speed of light (c) = 3×10^8 m/s	
	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	
Q1 .	Attempt any two	
₹		10
	velocity of alpha particles?	,
	b) Write a short note on Geiger Nuttal law and discuss its significance.	
		10
		10
	β - particle spectrum.	10
		10
	can take place.	10
	can take place.	
12	Attempt any two	
24		10
	Also discuss Gamma ray spectra.	10
		10
	applications of Mossbauer effect.	10
	(iii) From the Bohr-Wheeler theory obtain the stability limit against	10
	spontaneous fission.	10
	(iv) Obtain Weizsacker's Semi-Empirical mass formula. Draw a neat	10
	diagram indicating the variation of contribution of different energy	10
	terms to the binding energy per nucleon with respect to mass number	
	A.	
	A. E. C.	
72	Attempt any two	
Įs į		10
	(i) Explain Nuclear Chain Reaction. What are the various factors on which it depends?	10
		10
		10
		10
	(iv) Discuss in detail the principle, construction and working of Cyclotron.	10
	Color St. St.	

Q4		Attempt any two	
	(i)	Summarize the important experimental properties of the deuteron.	10
	(ii)	State conservation laws for the various properties of elementary	10
		particles.	
		Which of the following reactions can occur by conservation laws of	
		elementary particles? If not, state the conservation principles violated	
		by them.	
		a) $\Lambda^0 \rightarrow p + \pi^-$	
		b) $\pi^+ + p \rightarrow \pi^+ + p + \pi^- + \pi^0$	
		c) $\gamma + n \rightarrow p + \pi^-$	
	(iii)	(a) Write note on electrons, positrons and their anti particles.	10
		(b) Explain Yukawa potential.	
	(iv)	Explain qualitatively the Quark model.	10
Q5 .		Attempt any four	
	(i)	Ra^{226} decays by α – emission to Rn^{222} . The alpha disintegration energy	05
	5	is 4.863 MeV. Calculate the kinetic energy of the alpha particle.	
	(ii)	What is meant by electron capture?	05
	(iii)	Explain the phenomenon of internal conversion.	05
	(iv)	Write short note on shell model of nucleus.	05
	(v)	Calculate the amount of energy available if 10gm of 92U ²³⁵ is	05
	(A)	completely fissioned. Given: Energy per fission = 200 MeV, and	
		Avogadro's number = 6.022×10^{23} per gm-mole.	
	(vi)	Protons are accelerated in a 100cm cyclotron. The oscillator frequency	05
		is 10 Megacycle. Calculate the magnetic field needed for the protons.	
		Also calculate the energy required for acceleration of ions.	
		Given: $e = 1.6 \times 10^{-19}$ C, Mass of proton $m = 1.67 \times 10^{-27}$ kg.	
	(vii)	On the basis of the meson theory, estimate the mass of the exchanged	05
	(111)	particle if the 'range' of the potential is 10 ⁻¹⁵ m?	00
	(viii)	Show that lepton number and baryon number is conserved in case of	05
		neutron to (β) decay.	,,