Time: 3 hrs. M. M.: 100

N.B.:

- 1. **All** questions are **compulsory**.
- 2. **Figures** to the **right** indicate **full** marks.
- 3. Draw **neat** diagrams wherever **necessary**.
- 4. Symbols have usual meaning unless otherwise stated.
- 5. Use of **non-programmable** calculator is allowed.

Q1. Attempt any two

- (i) State and prove Kepler's laws of planetary motion. 10
- (ii) Discuss quantitatively the motion of a particle in an inverse square field. Show that the eccentricity of the particle is given by $\in = \sqrt{1 + \frac{2EL^2}{mK^2}}$. Give conditions on E and \in for different shapes of orbits.
- (iii) What is a Foucault pendulum? Obtain equation of motion for it. Hence show that the pendulum precesses slowly clockwise in the northern hemisphere.
- (iv) Consider a starred (rotating) reference frame rotating with angular velocity ω relative to the unstarred (fixed) frame with their origins O and O^* coinciding. Prove that for an arbitrary vector \vec{A} ,

$$\frac{d^2\vec{A}}{dt^2} = \frac{d^{*2}\vec{A}}{dt^2} + \vec{\omega} \times (\vec{\omega} \times \vec{A}) + 2\vec{\omega} \times \frac{d^*\vec{A}}{dt} + \frac{d^*\vec{\omega}}{dt} \times \vec{A}$$

Q2 Attempt any two

- (i) Starting with D'Alembert's Principle, obtain Lagrange's equations in terms of generalized coordinates.
- (ii) What is meant by generalized co-ordinates? Derive an expression for generalized velocity and generalized kinetic energy.
- (iii) A body of mass m_1 can move on a smooth flat horizontal table top. It is connected to a string of length ℓ which passes through a hole in the centre of the table. The other end of the string is connected to a mass m_2 which is suspended vertically. Identify appropriate generalized coordinate for the system and obtain the equations of motion using D'Alembert's principle.
- (iv) A double pendulum consists of two weightless rods connected to each other and a point of support. The masses m_1 and m_2 are not equal but the length of the rods are equal. Pendulums are free to swing only in one vertical plane. Write down the Lagrangian for the system.

Q3 Attempt any two

- (i) For a moving fluid show that 10
 - a) $\frac{dp}{dt} = \frac{\partial p}{\partial t} + \bar{v} \cdot \bar{\nabla} p$ b) $\frac{d}{dt} \delta V = \bar{\nabla} \cdot \bar{v} \delta V$

(Symbols have their usual meanings)

(ii) Derive Bernouilis theorem. Hence for a steady flow of the fluid show that, $\frac{v^2}{2} + \frac{p}{o} - \mathcal{G} + u = constant \quad \text{(Symbols have their usual meanings)}$

25547 Page 1 of 2

	(iii)	With reference to rotations of rigid body explain setting of the Euler's angles. Draw suitable diagrams. Find expression for the Lagrangian of a heavy symmetric top.	10
	(iv)	Derive an expression for the moment of inertia tensor for a rigid body made up of N number of particles.	10
Q4		Attempt any two	
ų.	(i)	Discuss numerical solutions of Duffing's equation for $\gamma = 0.1$ and $f = 0.5$ and 2) $\gamma = 0.1$ and $f = 3$.	10
		Compare the nature of odd and even harmonics.	
	(ii)	Consider an anharmonic oscillator with potential energy	10
		$V(x) = K\left(\frac{x^2}{2} + \frac{\alpha x^4}{4}\right)$ where K is the spring constant and α is	
		anharmonic coefficient. Discuss the potential energy curve for positive and negative values of K and α . Comment on confinement of motion.	
	(iii)	Discuss fixed points of a logistic map, stability of fixed points and periodic attractors. Discuss logistic map for $3 < \lambda < 4$ and explain the	10
	(iv)	onset of chaos qualitatively.	10
		Discuss numerical solutions of Duffing's equation for 1) $\gamma = 0.1$ and $f = 20$ and 2) $\gamma = 0.1$ and $f = 25$	/10
OF		Attampt any form	
Q5.	(i)	Attempt any four If a body of mass 100 kg is moving with a velocity of 10m/s; estimate	05
	(1)	the maximum Coriolis force experienced by the body.	
	(ii)	The eccentricity of a planet's orbit about sun is 0.4. Find the ratio of the	05
	No.	lengths of the semi major to the semi minor axes of the orbit of the planet.	
	(iii)	Write down the Lagrangian for a simple pendulum and hence find its equation of motion.	05
	(iv)	Define constraints. With good examples, explain holonamic and non-	05
	W.	holonomic constraints.	
	(v)	Consider a fluid flow given by $\vec{v} = cy\hat{\imath}$. Show that the fluid is	05
A. P.		incompressible and non-irrotational.	
	(vi)	What is a rigid body? Discuss the different types of rigid bodies with	05
	(vii)	reference to the symmetry present in the body. Two very close initial values of x on logistic map are 0.40000 and	05
	(VII)	0.40002 respectively. With λ =4, after 20 iterations the values are	US
		0.14561 and 0.00170 respectively. Calculate Lyapunov exponent.	
ST.	(viii)		05
