Paper / Subject Code: 88680 / Mathematics: Integral Transforms(R-2023)

Duration: 2 ½ Hrs Marks: 75

N.B. : (1) All questions are compulsory.

(2) Figures to the right indicate marks.

Notations: The Laplace transform of $f(t) = \mathcal{L}\Big(f(t)\Big)$ and the Fourier transform of $f(t) = \mathcal{F}\Big(f(t)\Big)$

Q 1 (A) Attempt any One of the following:

(i) If f(t) is a periodic function of period A, and if $\mathcal{L}(f(t))$ exists, then prove that

$$\mathscr{L}\left(f(t)\right) = \frac{1}{1 - e^{-As}} \int_0^A e^{-st} f(t) \ dt.$$

Hence find the Laplace transform of $f(t) = \frac{2t}{T}$ for 0 < t < T and f(t) = f(t+T)

(ii) If
$$\mathscr{L}(f(t)) = F(s)$$
 then show that $\mathscr{L}(t^n f(t)) = (-1)^n \frac{d^n}{ds^n} F(s)$ for all $n \in \mathbb{N}$.

(B) Attempt any Two of the following:

(i) Find $\mathcal{L}\left(t \ e^{-2t} \sinh 3t\right)$.

(ii) If
$$\mathcal{L}(f(t)) = F(s)$$
 then prove that $\mathcal{L}(\frac{1}{t} f(t)) = \int_{0}^{\infty} F(s) ds$.

(iii) Find
$$\mathscr{L}^{-1}\left(\frac{1}{s(s-3)^2}\right)$$
.

Q 2 (A) Attempt any One of the following:

(i) If $F(s) = \mathscr{F}\left(f(t)\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{ist} dt$ then prove the following.

(I) $\mathscr{F}\left(e^{ibt} f(t)\right) = F(s+b)$ (II) $\mathscr{F}\left(f(at)\right) = \frac{1}{|a|} F\left(\frac{s}{a}\right) \quad a \neq 0.$

(8)

(12)

(ii) If $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{ist} dt$ is the Fourier transform of f(t) then prove that (I) $\mathscr{F}(f(-t)) = F(-s)$ (II) $\mathscr{F}(\overline{f(-t)}) = \overline{F(s)}$.

(B) Attempt any Two of the following:

(i) Obtain the Fourier integral representation of the function f(t) defined as follows.

$$f(t) = \begin{cases} -1 & \text{if } -1 < t < 0, \\ 1 & \text{if } 0 < t < 1, \\ 0. & \text{otherwise.} \end{cases}$$

(ii) Find the Fourier transform of $e^{-a|t|}, a > 0$. Hence show that

$$\mathscr{F}\left(\frac{1}{t^2+a^2}\right) = \frac{1}{a} \sqrt{\frac{\pi}{2}} e^{-a|s|}.$$

1 of 2

- (iii) Express the function f(x) as Fourier sine integral where $f(x) = \begin{cases} \sin x & \text{if } 0 \le x \le \pi \\ 0 & \text{if } x > \pi. \end{cases}$ and evaluate $\int_0^\infty \frac{\sin sx * \sin \pi s}{1 - s^2} ds$.
- Q 3 (A) Attempt any One of the following:

- (i) (I) Write a short note on one dimensional wave equation.
 - (II) Find a bounded solution of $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial t^2} = xt, u(0,t) = 0, u(x,0) = 0 = u_t(x,0)$

(ii) Let
$$g(t)$$
 be a function defined for all $t \ge 0$. If $f(t)$ is a function defined by
$$f(t) = \begin{cases} e^{-xt}g(t) & \text{if } t \ge 0, \\ 0 & \text{if } t < 0. \end{cases}$$
 and $\mathscr{F}(f(t)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ist} f(t) dt$, then

- (I) state and prove the relation between $\mathcal{L}(g(t))$ and $\mathcal{F}(f(t))$.
- (II) verify the above relation for g(t) = 1 and x = s + is.
- (B) Attempt any Two of the following:

(12)

- (i) Find $\int_{0}^{\infty} \frac{e^{-2t} e^{-3t}}{t} dt$ using Laplace transforms.
- (ii) Solve the initial value problem y'' + 2y' + 2y = 2, y(0) = 0, y'(0) = 1 using Laplace transforms.
- (iii) Solve using Laplace transforms $R \frac{dy}{dt} + \frac{1}{C} y = V, y(0) = 0$ where R, C, V are constants.
- Q 4 Attempt any Three of the following:

(15)

- (a) If $\mathscr{L}(f(t)) = F(s) = \frac{1}{s(s^2 + 2s + 2)}$, find $\lim_{t \to \infty} f(t)$, using Final value theorem.
- (b) Find $\mathcal{L}((2+te^{-3t})^2)$.
- (c) Let f(t) = H(1 |t|) where H(1 |t|) is defined as $H(1 |t|) = \begin{cases} 1, & \text{if } 1 > |t| \\ 0, & \text{if } 1 < |t|. \end{cases}$ Find $\mathscr{F}(f(t))$ and hence find $\mathscr{F}^{-1}(\frac{\sin s}{s})$.
- (d) Let f(t) be a real valued even function and let $F(s) = \mathscr{F}(f(t))$. Prove that F(s) is a real and even function.
- (e) For what values of the constant $c, u = \sin t \sin x$ is a solution of $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, t \ge 0, x \ge 0.$
- f) Evaluate $\int_0^\infty e^{-2t} \left(\int_0^t e^{-4u} \sin 3u \ du \right) dt$, using $\mathcal{L} \left(\int_0^t e^{-4u} \sin 3u \ du \right)$.