Time: 3 Hours Marks: 100

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Draw neat labelled diagrams wherever necessary.
- 4. Use of a simple, non-programmable calculator is allowed.

Q1. Answer any TWO of the following:

(20)

- A) What are Carbohydrates? Explain the structure of different aldose sugars studied by you
- B) Define Proteins and describe their general structure. How are they classified?
- C) Compare and contrast the mechanisms of competitive and non-competitive inhibition in enzyme kinetics.
- D) What are enzymes? Classify them according to IUB classification citing suitable examples.

Q2. Answer any TWO of the following:

(20)

- A) Describe the structure and activity of Nitrogenase enzyme complex.
- B) Explain in detail the steps involved in the formation of root nodules.
- C) Write a note on the commercial applications & physiological effects of Cytokinins as growth regulators.
- D) Explain the role of Abscisic acid as a growth regulator.

Q3. Answer any TWO of the following:

(20)

- A) What are point mutations? Explain missense and nonsense mutations with examples.
- B) What are mutagens? Explain the role 5BU as a mutagen.
- C) Explain the molecular basis of PKU?
- D) Draw the map of three genes (sc s and v) showing the distance between all pairs of genes by finding out the correct gene order.

sc	S	V	314
+	(2)	(1)	280
+	S S	v	150
sc	+ ,	+	156
sc	+ 💸	v	46
(S)	Ŝ	+27	30
sc	S	#	10
+ (+	v	14

Q4. Answer any TWO of the following:

(20)

A) Three varieties of wheat were sown in 4 plots each and the following yields in quintal per acre were obtained. Analyze with **ANOVA** whether the three varieties differ in yields or not.

Q	A	80		В	С
20	8		Ry S	7	2
7	4	287	S) V	5	5
9	6	23 25	20	5	4
	75	2, 60,	, (2)	3	4

(Tabulated F at 5% = 4.26)

B) Number of seeds (x) and length of pod (y) are given below. Calculate the **regression** coefficient b.

X	1	1	2	5	4	6	3	2	3	4
у	2.0	1.5	2.0	4.5	5.0	7.0	4.0	3.0	3.0	4.5

C) Albino rats were given a drug for 7 days. Their body weight was measured before and after exposure to the drug. Analyse whether the drug has any effect on body weight with the help of **paired** t – **test.**

	1	2	3	4 🗞	5	6	700	8	9	10
Before	110	115	102	98	112	110	97	120	102	110
After	109	116	100	95	108	112	98	115	98	1118°

(Tabulated t at 5% = 2.26)

D) In order to find effect of *Azolla* growth on rice yield, *Azolla* was grown in ten plots before rice planting. Ten similar plots were taken as control without *Azolla* growth. The yield of rice is given in the table. Verify with **unpaired t** –**test** whether there is effect of *Azolla* growth on rice yield.

ice jieia.										
	1.0	2	3	4	5	6	7	8	9	10
With	15.3	15.8	16.1	17.0	15.5	16.5	16.2	15.5	717.1	16.3
Without	14.5	13.8	15.9	13.9	14.8	14.9	15.2	15.0	14.1	13.7
B	4		224	10	7	7	Di.	25,0	(A)	

(Tabulated t at 5% = 2.10)

Q5. Write short notes on any FOUR of the following:

(20

- a) Km
- b) Saturated fatty acids
- c) Denitrification
- d) Commercial applications of Auxins
- e) Incomplete linkage
- f) UV light as a mutagen
- g) Degree of freedom in ANOVA
- h) Applications of t test
