T.Y.B.Sc (Sem YI) March. 2015 N Physics Nuclear physics Q.P. Code: 14685

[Total Marks : 75

ıp'

(21/2 Hours)

B.: (1) All questions are compulsory. (2) Figures to the right indicate full m (3) Draw neat diagrams wherever neces (4) Symbols have their usual meanings (5) Use of log table and non programm	ties stated otherwise
(a) Attempt any one. (i) Discuss alpha decay paradox.	How did Gamow resolve it? State the poression for the same. Obtain its solution
emitters	explain the Geiger-Nuttal law for alpha ar reactions and explain any one with an
Explain them in brief. How did Pa (ii) What is Mossbauer effect? Des	l in the interpretation of β-ray spectrum? uli overcome these difficulties? cribe the experimental set up to study mificance of the movable source in the
(b) Attempt any one. (i) With the help of neat labeled diagra of Reines & Cowan's experiment for (ii) Explain the nuclear isomerism with	am, describe experimental arrangement 5 or the detection of neutrino. the help of suitable example. 5
die noip of graph.	nt (pulse height) with voltage. Explain 10 ass formula. Explain the contribution 10

K	Attempt any one.	
0)	Discuss the merits and demerits of cloud chamber.	5
	(ii) Discuss energetics of mirror nuclei.	5
(a)		10
-	What is fission chain reaction? What are the difficulties one comes across in achieving sustained chain reaction with uranium? Describe neutron cycle in a thermal nuclear reactor.	10
	(ii) What are elementary particles? Give an account of the experimental	10
	detection of antiproton and antineutron.	
(b)	Attempt any one.	
	(i) Explain the process of energy production in stars.	5
	(ii) What do you understand by prompt neutrons and delayed neutrons? Explain	5
	the significance of delayed neutrons in a nuclear reactor.	
i. (a)	Attempt any one.	
	Po decays by emitting four groups of alpha particles having kinetic energies in (MeV) of 7.68, 8.28, 9.07 and 10.51 respectively. Calculate the	4
	alpha disintegration energies. Sketch the energy level scheme.	
	(ii) A neutron beam is incident on a stationary target of ¹⁹ , F atoms. The reaction ¹⁹ , F (n, p) ¹⁹ , O has a Q value of - 3.9 MeV. Calculate the lowest neutron energy which will make the reaction possible.	4
	or and a second possible.	
(b) A	ttempt any one.	
	(i) Prove that ⁴⁰ ₁₉ K shows β ⁺ activity when it decays into ⁴⁰ ₁₈ A and calculate	
3/	corresponding Q_{β^+} .	4
	Given: $M \left({}^{40}_{19}K \right) = 39.964000 u$,
	$M \left({}^{40}_{18} A \right) = 39.962384 u$	
	$m_e = 0.51 \text{MeV}$	

931.5 MeV

1 u

3

3

(ii) Calculate the energy of γ rays emitted in the β decay of ¹⁴₆C

M(''C) = 14.003242 uGiven :-

M("N) = 14.003074 u

End point energy = 0.65 MeV

931.5 MeV

- (c) Attempt any one.
 - (i) The ionization chamber is connected to an electrometer of capacity 0.6 pf and voltage sensitivity of 2 divisions per volt. A beam of a - particles causes a deflection of 1.0 division. Calculate the number of ien-pairs required and the energy for the source of \alpha - particles.

Charge on electron $e = 1.6 \times 10^{-19}$ C.

(ii) For an isobaric family with A = 39, estimate the nuclear charge Z, for the most stable isobar.

Given: $a_a = 19 \text{ MeV}, a_c = 9.60 \text{ MeV}$

 $M_p = 1.007825 u$

 $M_n = 1.008665 u$

lu = 931.5 MeV

- (d) Attempt any one.
 - (1) A sample of 5 gram of "U is completely fissioned. Calculate the amount of

Given: Energy released per fission of \$250 nucleus is 170 MeV.

Avogadro number $A_v = 6.023 \times 10^{23} \text{ mole}^{-1}$.

How many neutrons will there be in the 25th generation, if the fission process starts from 1000 neutrons and k = 1.03?