(Afternoon)

Library 13/04/15 (Afternoon)

TYB.SC (VI) (75:25/60:40)

TOPOlogy of Matric Spaces - II (Total Marks: 75)

N.B.: (1) All qustions are compulsory.

- (2) Figures to the right indicate marks for respective subquestions.
- 1. (a) Attempt any one question:
 - (i) Let f be a continuous real valued periodic function, defined on $[-\pi, \pi]$ and having period 2π . If $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is the Fourier series of f on $[-\pi, \pi]$ (8) then prove that $: \sigma_n(x) \longrightarrow f(x)$ as $n \longrightarrow \infty$, where $\sigma_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x)$, S_k is the k^{th} partial sum of the Fourier series of f.
 - (ii) Let f be a continuous real valued periodic function, defined on $[-\pi,\pi]$ and having period 2π . If $f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is the Fourier series of f on (8) $[-\pi,\pi]$ then prove that : $S_n(x)-f(x)=\frac{2}{\pi}\int_0^\pi \left[\frac{f(x+t)+f(x-t)}{2}-f(x)\right]D_n(t)\mathrm{d}t$ where $D_n(x)=\frac{1}{n}\sum_{k=0}^{n-1}S_k(x)$, S_k is the k^{th} partial sum of the Fourier series of f and D_n is the Dirichlet's kernel.
 - (b) Attempt any three questions:
 - (i) Define Diriclet's Kernel $D_n(t)$ nad Fejer's Kernel $K_n(t)$. Show that $K_n(t) = \frac{\sin^2(\frac{nt}{2})}{2n\sin^2\frac{t}{2}} \infty < t < \infty, \ t \neq 2k\pi, k \in \mathbb{Z}$
 - (ii) Is the series $\sum_{n=1}^{\infty} \left[\frac{\cos nx + \sin nx}{n^{\frac{3}{2}}} \right]$ the Fourier series of a function $f \in C[-\pi, \pi]$?

 [4]
 - (iii) If f(x) = |x|, $-\pi \le x \le \pi$, and $f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, compute $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2$. State clearly the result used. (4)
 - (iv) $f(x) = \cos^3 x + \sin^5 x$ in $[-\pi, \pi]$ and $f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$. Then (4) find the Fourier coefficients a_0, a_1 and b_1
- 2. (a) Attempt any one question:
 - (i) $K \subseteq \mathbb{R}^n$ (distance Euclidean), K is closed and bounded. Show that K is sequentially compact.
 - (ii) Let $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$ (distance Euclidean). Prove that I(8)
 - (b) Attempt any three questions:
 - (i) Show that the subset $A = \{(x, y) \in \mathbb{R}^2 : |x| \le 1\}$ of the metric space (\mathbb{R}^2, d) , (4) (d Euclidean distance) is not compact.

OM-Con.: 2736-15.

QP Code: 14624

- (ii) Show that the following function (distance in \mathbb{R} is usual) $f:[0,1]\times[0,1]\to\mathbb{R}$, (4) f(x,y)=x+y (distance in \mathbb{R}^2 Euclidean) is uniformly continuous.
- (iii) Let (X, d) be a metric space and $K \subseteq X$ be a compact set. Show that a closed (4) subset F of K is compact.
- (iv) Prove or disprove: A closed and bounded subset of a metric space is compact. (4)

3. (a) Attempt any one question:

- (i) Show that a metric space (X, d) is connected if and only if every continuous function $f: X \longrightarrow \{1, -1\}$ is constant.
- (ii) Let (X, d) be a metric space and A be a connected subset of X. If A ⊂ B ⊂ Ā. (8) then Show that B is connected. In particular, prove that Ā is connected. Give an example to show that if A, C are connected subsets of X and A ⊂ B ⊂ C then B need not be connected.
- (b) Attempt any three questions:
 - (i) Show that the set $A = \{(x,y) \in \mathbb{R}^2 : y^2 = x\}$ is path connected subset of \mathbb{R}^2 (distance being Euclidean).
 - (ii) If (X, d) be a connected metric space and $f: X \longrightarrow \mathbb{Z}$ (distance in \mathbb{Z} being usual distance) is a continuous function then prove that f is a constant function. (4)
 - (iii) Prove or disprove: The subset $\{(x,y) \in \mathbb{R}^2 : y \neq 0\}$ of (\mathbb{R},d) (d being Euclidean distance) is connected. (4)
 - (iv) Let (X, d) be a metric space. If A is a finite subset of X having more than one element, show that A is disconnected. (4)

4. Attempt any three questions:

- (a) $f(x) = \frac{x^2}{4}$, $-\pi \le x \le \pi$. Find the Fourier series of f. Assuming that the Fourier series of f converges to f(x) at x = 0, find the sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$. (5)
- (b) Let $f \in C[-\pi, \pi]$ and f has Fourier series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, show that (5) $\sigma_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(1 \frac{k}{n}\right) (a_k \cos kt + b_k \sin kt)$
- (c) Show that $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is a compact subset of \mathbb{R}^2 , distance being Euclidean. (5)
- (d) Let (X, d) be a compact metric space. If $\{A_n\}$ is a sequence of non-empty closed sets in X such that $A_{n+1} \subseteq A_n$ for each $n \in \mathbb{N}$, then show that $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$. (5)
- (e) Prove or disprove: $A = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ is a connected subset of \mathbb{R}^2 (distance being Eulcidean)
- (f) Prove that a path connected subset of \mathbb{R}^n (distance being Euclidean) is connected. (5)

OM-Con.: 2736-15.