09/04/15 B.Sc (V) * Physical & Inorg. Chemistry

QP Code: 14567

(2 1/2 Hours)

[Total Marks :75

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate full marks.

(3) Use of logarithmic tables/ Non programmable calculator is allowed

Answers to the two sections must be written in two separate answer books and tied together.

Physical Constants $N = 6.022 \times 10^{23}$ $k = 1.38 \times 10^{-23} \text{ J/K}$ F = 96500 CR = 8.314 J/mol/K $h = 6.626 \times 10^{-34} \text{ J/s}$ $c = 3.0 \times 10^8 \text{ m/s}$ $\pi = 3.142$ 2.303 RT = 0.0592at 298K

 $1a.mu = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ Me}$

Section -I

1		mpt any three of the following:- Explain the effect of presence of isotopes on the rotational spectra. Define dipole moment and induced dipole moment. How does dipole	5
		moment study help in differentiating between linear and non-linear molecules? What is Raman shift? Explain the origin of stokes and anti-stokes lines in	5
		Paman spectra	5
	(d)	Define force constant. The vibrational frequency of a diatomic molecule is 3.33×10^5 m ⁻¹ . Calculate the force constant of the bond, if the reduced mass of the molecule is 1.2×10^{-27} kg.	3
	(e)	Show that the frequency separation of successive lines in rotational spectrum of a diatomic molecule is given by 2B, where B is rotational constant.	5
	(f)	Derive expression for P and R branch lines in vibrational -rotational spectra.	5
	Attem	apt any three of the following :-	
	(a)	With respect to Lithium ion cell, explain cathode, anode and electrolytes used in the cell.	5
	(b)	With respect to NMR, explain following terms. (1) Spin-spin relaxation (2) Spin-lattice relaxation.	5
		L'EVIDNI OVE	וכוי

TURNOVER

OM-Con. 1493-15.

(d) Explain the construction	 (c) Distinguish between low resolution spectra of ethyl alcohol and methyl alcohol (d) Explain the construction, working and electrode reactions of Bacon's H₂-O₂ fuel cell. 							
(e) Explain Lindemann's theory of unimolecular reactions. (f) On the basis of rate of reactions, classify chemical reactions. State suit example for each class.								
3. Attempt any seven from the formula (1) molecule shows (a) HCl		(c) H ₂						
(2) The number of modes of formula (a) 3n-5	f vibration for a non-li (b) 3n-6	inear molecule are given by (c) 3n-4						
(3) Dipole moment is zero in molecule								
(a) meta	(b) para	(c) ortho						
(4) When for a molecule rotational spectra.	_, the molecule is sai	d to obey selection rule for						
(a) $\Delta J = \pm 2$	(b) ΔJ = 0	(c) $\Delta J = \pm 1$						
(5) The energy required for s vibrations. (a) more than	stretching vibrations is _	s that for bending						
Lang.	(b) less than	(c) equal to.						
(6) Zero point energy is the e (a) 306	(b) 298	esses atK. (c) 273						
(c) Compton effect	e. Noted 3	The transfers of the second of						
(8) Hydrogen is considered as resource. (a) diminishing	the promising fuel of (b) renewable	f future because of its (c) polluting						

OM-Con. 1493-15.

[TURN OVER]

OP Code: 14567 (9) Tetramethyl silane has equivalent protons in it and is used as reference in NMR. (a) 10 (b) 12 (c) 8 (10) The unit for chemical shift in NMR is (a) mol-1 dm-3 (b) mol.dm-3 (11) Effective collisions are collisions which take place between molecules (a) disoriented (c) deactivated (b) oriented (12) Ultra-fast reactions can be studied using method (a) continuous -flow (b) stop-flow (c) non-flow. Section -II 4. Answer any three of the following:-(a) Explain the effect of crystal field splitting on lattice energy. 5 (b) Explain Russel Saunder's coupling scheme. 5 (c) Draw a labelled molecular orbital energy level diagram for hexa fluoro ferrate 5 (II) ion comment on its magnetic properties. (d) Write any three merits and two demerits of crystal field theory. 5 (e) Explain crystal field splitting in square planar comlexes. 5 (f) Explain the effect of II - bonding on the value of 10 Dq in case of cyano 5 complexes. 5. Answer any three of the following:-(a) Explain the principles involved in aerobic and anaerobic processes. 5 (b) Write notes on the following:-5 TOC (i) Coagulation (c) Write notes on 5 (i) Calamine and its uses (ii) KMnO, and its uses. (d) Discuss the structure and bonding involved in borazine. 5 (e) What ere nanomaterials? Discuss the two dimentional nanoparticles. 5 (f) Describe in detail the colloidal route method for preparation of nanomaterials. 5 6. Write the most appropriate answer from those given for the following 8 (Answer any Eight) (1) d-d electron repulsions are ____ in a complexes metal ion than in a free metal ion.

[TURN OVER]

(c) twice

(b)

(a) more

(2) The ground term has the				zero					
(3) ² D is the ground state term (a) d ¹	for (b)	ď							
(4) 10 Dq value for tetrahedra complexes.	1 con	mplexes is	of tha	t for octahedral					
(a) $\frac{6}{9}$	(b)	<u>-4</u> 9	(c)	-3 8					
(5) The number of microstates (a) 10	in 1 (b)	P ² configuration is 20	15						
(6) The terms for d ¹ configuration are the same as that for configuration. (a) d ¹ (b) d ² (c) d ⁹									
(a) d‡	(b)	d ²	(c)	d ⁹ Manager t					
(7) Oxygen demanding waste in (a) depletion	n wa (b)	ater leads to o	f diss	solved O ₂					
(8) Removal of inoganic salts f (a) osmosis	(b)	precipitation	(c)	electrodialysis					
(9) 'BOD' is often expressed in (a) nano grams	(b)	of O ₂ requi	red p (c)	er litre of waste.					
10) The most widely used floc (a) Alum	cule (b)	ent in effluent treatm Boric acid	ent is	Na ₂ CO ₃					
11) The B-N bond in borazine (a) polar	is_ (b)	non polar	(c)	metallic					
12) The polymers that have attended	oms	of only one element	in th	eir backbone are					
(3) home at !			(c)	hetero atomic.					