Real Analysins & Mullivarosables Cakalus-1

(2 Hours)

Total Marks: 60

(7)

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate marks for respective subquestions.
- I. (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $(a,b) \in \mathbb{R}^2$. If $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and $\lim_{x\to a} f(x,y)$, $\lim_{y\to b} f(x,y)$ both exist. Prove that

 $\lim_{x \to a} \left[\lim_{y \to b} f(x, y) \right] = \lim_{y \to b} \left[\lim_{x \to a} f(x, y) \right] = L.$

Give an example to show that the converse is not true.

- (b) Attempt any two questions:
 - (i) State and prove Mean Value theorem for scalar fields (4)
 - (ii) Let $f(x,y) = \begin{cases} 0 & \text{if } y \le 0 \text{or if } y \ge x^2 \\ 1 & \text{if } 0 < y < x^2 \end{cases}$ Show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ along y = mx for any m. Is $\lim_{(x,y)\to(0,0)} f(x,y) = 0$? Justify your answer.
 - (4)(iii) Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x,y) = |x| + |y|. Check whether (4)
 - (1) $D_u f(0,0)$ exists for an arbitrary unit vector u
 - (2) f is continuous at (0,0).
 - (iv) Determine whether the partial derivatives of f exist at (0,0) for $f:\mathbb{R}^2\to\mathbb{R}$ defined by $f(x,y)=(x,y)\cdot T(x,y)$ where $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation. (4)
- 2. (a) Let S be an open subset of \mathbb{R}^2 and $f: S \to \mathbb{R}$ be such that D_1f , D_2f , $D_{12}f$, $D_{21}f$ exist on S. If $(a,b) \in S$ and $D_{12}f$, $D_{21}f$ are continuous on S, then show that (7)

 $D_{12}f(a,b) = D_{21}f(a,b).$

- (b) Attempt any two questions:
 - (i) If $f,g:S\to\mathbb{R}$ are differentiable on S, where S is an open subset of \mathbb{R}^n , then show that $(1) \nabla (fg) = f \nabla g + g \nabla f$

(2) $\nabla \left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$ at points where $g \neq 0$. (4)

- (ii) Find the direction derivatives of f(x, y, z) = 3x 5y + 2z at (2, 2, 1) in the direction of outward normal to the sphere $x^2 + y^2 + z^2 = 9$. (4)
- (iii) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

 $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

Show that f is differentiable at (0,0).

(iv) Determine the second order Taylor formula $f(x,y) = e^x \cos y$ at x = 0, $y = \frac{\pi}{2}$. (4)

(4) (a) For the surface $\overline{r}(u,v)$ described by the vector equation $\overline{r}(u,v) = X(u,v)\hat{i} + Y(u,v)\hat{j} + Y(u,v)\hat{j}$ $Z(u,v)\hat{k}$, $(u,v) \in T$ where X, Y, Z are differentiable on T, define the fundamental vector $\partial \overline{\tau}$ $\partial \overline{\tau}$. product $\frac{\partial \overline{\tau}}{\partial u} \times \frac{\partial \overline{\tau}}{\partial v}$. If C is a smooth curve lying on the surface, then show that $\frac{\partial \overline{\tau}}{\partial u} \times \frac{\partial \overline{\tau}}{\partial v}$ is normal to C at each point.

- (b) Attempt any two questions:
 - (i) Show that the area of the surface of surface of revolution of the curve z = f(x) for

$$A(S) = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} dx$$

- (ii) Find the equation of the tangent plane to the given parametric surface $\overline{r}(u,v) = \frac{1}{2} \left(\frac{1}{2} \frac$ (x(u, v), y(u, v), z(u, v)) for x = u + v, $y = u \cos v$, $z = u \sin v$ at (1, 1, 0). (iii) Use Stoke's theorem to calculate

$$\iint_{S} \operatorname{curl} \, \overline{F} \cdot \widehat{n} dS,$$

where S is the surface of the hemisphere $x^2 + y^2 + z^2 = 1$, $x \ge 0$ cut by the cone $x^2 = y^2 + z^2$ for $\overline{F} = x^2 y \hat{i} + z \hat{j} + y \hat{k}$.

- (iv) Assuming S and V satisfy the conditions of the Divergence Theorem, with usual nota-(4)(4)
 - (1) $|V| = \frac{1}{3} \iint_{V} \overline{r} \cdot \widehat{n} dS$ where $\overline{r} = x\widehat{i} + y\widehat{j} + z\widehat{k}$ and |V| = volume of V.
 - (2) $\iint_{S} \operatorname{curl} \overline{F} \cdot \widehat{n} dS = 0.$
- 4. Attempt any three questions:
 - (a) Find a constant c so that at any point of intersection of the two spheres $(x-c)^2+y^2+z^2=3$ and $x^2 + (y-1)^2 + z^2 = 1$, the corresponding tangent planes are perpendicular to each other. (5)
 - (b) Compute the matrices Dg(1,1), D(f(g(1,1))) and $D(f\circ g(1,1))$ and verify that

$$D(f \circ g(1,1) = D(f(g(1,1)))Dg(1,1)$$

for $f(u, v) = (uv, u^2 + v^2)$, g(x, y) = (x + y, x - y).

- (c) Let $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$ for $(x,y) \neq (0,0)$. Find $\lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right)$ and $\lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right)$. (5)
- (5)(d) Verify Stoke's Theorem for $\overline{F}(x,y,z) = 3y\hat{i} + 4z\hat{j} - 6x\hat{k}$, S is the part of the paraboloid $z = 9 - x^2 - y^2$ that lies above the xy-plane oriented upwards. (5)