Total Marks: 100

(Time: 3 hours)

N.B.:	(1) All qu	estions are compulsory.	
	(2) Figure	es to the right indicate full marks.	
		f log table/ non-programmable calculator is allowed.	
Q.1		Attempt any four of the following.	20
Q.1	A)	Discuss various grades of laboratory reagents.	20
	B)	Calculate mass percent composition of each element in	
	D)	CH ₃ CH ₂ OH, ethanol molecule.	
		(Given: atomic mass of $C = 12$, $H = 1$, $O = 16$)	
	C)	Calculate the number of grams of pure Na ₂ CO ₃ required to prepare	
	,	250 cm ³ of 0.1 N solution. This Na ₂ CO ₃ is to be titrated with HCl	
		according to equation $CO_3^{-2} + 2 H^+ \rightarrow H_2CO_3$	
		(Given: atomic mass of Na = 23 , C = 12 , O = 16)	X .
	D)	Describe the sampling of homogeneous and heterogeneous liquid.	
	E)	Name different methods of reduction of sample size in sampling of	
		solid. Explain any two of them.	
	F)	Explain the terms quality and quality control.	
Q.2		Attempt any four of the following.	20
	A)	What are the advantages and limitations of EDTA as titrant?	
	B)	What are redox indicators? Explain the use of iron(II)	
	20 ^V	orthophenanthroline indicator.	
	C)	Calculate the potential of the system in the titration of 10 cm ³ of	
		0.2M Fe(II) against 0.2M Ce(IV) solution when:	
		i) 12 cm ³ Ce(IV) solution added.	
		ii) $15 \text{ cm}^3 \text{ Ce(IV)}$ solution added.	
	100	$(E^0_{Pt^{\{}Fe+2,Fe+3} = +0.771V, E^0_{Pt^{\{}Ce+3,Ce+4} = +1.440V)}$	
	(4)	How is the selectivity is enhanced in the complexometric titrations by the following:	
		i) kinetic masking ii) use of masking and demasking agents.	
	E)	What are metal-ion indicators? What are their requirements?	
	F)	Derive an equation for potential of the system at equivalence point	
		in the titration of Fe(II) against MnO_4^{-1} .	
Q.3.		Attempt any four of the following.	20
	A)	Discuss the principle of Atomic Absorption Spectroscopy. Explain	
D'		the role of rotating chopper in AAS.	
	B)	Discuss the basic principles of FES.	
	C)	Explain the applications of fluorescence spectroscopy.	

Page 1 of 3

	D)	Explain the principles underlying the emission of fluorescent light. How does fluorescence differ from phosphorescence?	
	E)	Draw a schematic diagram of turbidimeter and explain	
	E)	turbidimetric titrations using turbidimetric titration curve. What are the important factors affecting the scattering of radiation?	
	F)	Explain any two.	
Q.4		Attempt any four of the following.	20
	A)	Explain any two factors affecting solvent extraction.	
	B)	Discuss the different steps involved in process of solid phase extraction.	
	C)	Explain the terms used in HPLC i) isocratic elution ii) gradient elution. Give any three applications of HPLC.	
	D)	With a neat and labelled diagram explain the working of HPLC.	
	E)	Give applications and limitations of HPTLC.	
	F)	Explain double beam densitometer used in HPTLC. Give any two advantages of HPTLC.	
o =	O.		, . =
Q.5	A)	statements: (any five)	05
		a) material can be used for verification of method validation	
		parameters.	
		i)Reference material ii) Certified reference material iii) LR grade	
		b) The next step after quality control is	
		i)quality management ii) quality assurance iii) quality development	
		c) The sum of mole fraction of solute and solvent is	
		i) 1 ii) 1.5 iii) 2.5	
		d) is a method of expressing concentration in a solution on weight basis.	
		i) Normality ii) Molality iii) Molarity	
		e) Flushing method is used for sampling of	
		i) Solid ii) liquid iii) gases	
		f) is used for sampling of compact solid.	
		i) Auger sampler ii) Multiple tube sampler iii) Split tube thief	
		g) The ratio of weight of sample to total weight of bulk is i) Bulk size ii) Size:weight ratio iii) Bulk ratio	
		h) is used for sampling of flowing liquid.	
		i)Concentric tube thief ii) Geo-sampler iii) multiple tube sampler	
Q.5	B)	State whether true or false: (any five)	05
STEP .		a) In the titration of iron(II) with cerium(IV); iron(II) undergoes reduction.	
		b) Potassium permanganate acts as self indicator in redox titrations.	
		c) Nernst's distribution law is applicable in redox titrations.	
		d) pCa is defined as $log_{10}[Ca^{+2}]$	
		e) Diphenyl amine is the first indicator to be used in redox titrations.	

Page 2 of 3

Q.5 C)	a)b)c)d)e)	(any five) (acetylene, phosphorescence toxic metals, mist, low, right AAS is used to detect products. The fuel used in a premix but The nebulizer converts the sa Delayed re-emission of absor	ect alter e, turbic t) like rner in F imple so	rnatives given in the bracket: dity coefficient, turbidance, Cu, Ni, Zn and Hg in food ES is	05		
Q.5 C)	b) c) d) e)	(any five) (acetylene, phosphorescence toxic metals, mist, low, right AAS is used to detect products. The fuel used in a premix but The nebulizer converts the sa Delayed re-emission of absor	e, turbio t) like rner in F imple so	dity coefficient, turbidance, Cu, Ni, Zn and Hg in food ES is	05		
	b) c) d) e)	AAS is used to detect products. The fuel used in a premix but The nebulizer converts the satisfied Delayed re-emission of absorbatical products.	like rner in F imple so	ES is			
	c) d) e)	The nebulizer converts the sa Delayed re-emission of absor	imple so				
	d) e)	The nebulizer converts the sa Delayed re-emission of absor	imple so				
	e)		bed radi	The nebulizer converts the sample solution into a			
	ŕ	Phosphorimetric experiment	Delayed re-emission of absorbed radiation is called				
		Phosphorimetric experiments are normally carried out at temperature.					
	f) (In the expression w.r.t. turbic	limetry,	S=Ktc, 'K' stands for .			
	g)	_ _	r is usua	lly, but not necessarily, placed			
	h)			a function of concentration of	P		
Q.5 D)		Match the columns: (any fi	ve)		05		
		Column A		Column B			
	a)	TBP solvent	(i)	Ion-pair formation			
	b)	Multistage separation	(ii)	Easily extracted in organic solvent			
Ble Still	c)	Hydrophobic functional groups chemically bonded silica	(iii)	Analytical column			
	d)	Neutral chelate	(iv)	HPTLC			
	e)	Complexes form clusters	(v)	Solid phase extraction			
\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	f)	HPLC	(vi)	pH _{1/2}			
SECT!	g)	Densitometer	(vii)	Easily extracted in aqueous solvent			
			(viii)	Countercurrent extraction			
	SX.	ECILE COSE STEP	(ix)	Extraction of uranyl nitrate			
		*****	*****				

36355