Total Marks: 100 (Time: 3 hours) | N.B.: | (1) All qu | estions are compulsory. | | |-------|-----------------|--|-----| | | (2) Figure | es to the right indicate full marks. | | | | | f log table/ non-programmable calculator is allowed. | | | | | | | | Q.1 | | Attempt any four of the following. | 20 | | Q.1 | A) | Discuss various grades of laboratory reagents. | 20 | | | B) | Calculate mass percent composition of each element in | | | | D) | CH ₃ CH ₂ OH, ethanol molecule. | | | | | (Given: atomic mass of $C = 12$, $H = 1$, $O = 16$) | | | | C) | Calculate the number of grams of pure Na ₂ CO ₃ required to prepare | | | | , | 250 cm ³ of 0.1 N solution. This Na ₂ CO ₃ is to be titrated with HCl | | | | | according to equation $CO_3^{-2} + 2 H^+ \rightarrow H_2CO_3$ | | | | | (Given: atomic mass of Na = 23 , C = 12 , O = 16) | X . | | | D) | Describe the sampling of homogeneous and heterogeneous liquid. | | | | E) | Name different methods of reduction of sample size in sampling of | | | | | solid. Explain any two of them. | | | | F) | Explain the terms quality and quality control. | | | | | | | | Q.2 | | Attempt any four of the following. | 20 | | | A) | What are the advantages and limitations of EDTA as titrant? | | | | B) | What are redox indicators? Explain the use of iron(II) | | | | 20 ^V | orthophenanthroline indicator. | | | | C) | Calculate the potential of the system in the titration of 10 cm ³ of | | | | | 0.2M Fe(II) against 0.2M Ce(IV) solution when: | | | | | i) 12 cm ³ Ce(IV) solution added. | | | | | ii) $15 \text{ cm}^3 \text{ Ce(IV)}$ solution added. | | | | 100 | $(E^0_{Pt^{\{}Fe+2,Fe+3} = +0.771V, E^0_{Pt^{\{}Ce+3,Ce+4} = +1.440V)}$ | | | | (4) | How is the selectivity is enhanced in the complexometric titrations by the following: | | | | | i) kinetic masking ii) use of masking and demasking agents. | | | | E) | What are metal-ion indicators? What are their requirements? | | | | F) | Derive an equation for potential of the system at equivalence point | | | | | in the titration of Fe(II) against MnO_4^{-1} . | | | | | | | | Q.3. | | Attempt any four of the following. | 20 | | | A) | Discuss the principle of Atomic Absorption Spectroscopy. Explain | | | D' | | the role of rotating chopper in AAS. | | | | B) | Discuss the basic principles of FES. | | | | C) | Explain the applications of fluorescence spectroscopy. | | | | | | | Page 1 of 3 | | D) | Explain the principles underlying the emission of fluorescent light. How does fluorescence differ from phosphorescence? | | |--------|------------|--|----------| | | E) | Draw a schematic diagram of turbidimeter and explain | | | | E) | turbidimetric titrations using turbidimetric titration curve. What are the important factors affecting the scattering of radiation? | | | | F) | Explain any two. | | | | | | | | Q.4 | | Attempt any four of the following. | 20 | | | A) | Explain any two factors affecting solvent extraction. | | | | B) | Discuss the different steps involved in process of solid phase extraction. | | | | C) | Explain the terms used in HPLC i) isocratic elution ii) gradient elution. Give any three applications of HPLC. | | | | D) | With a neat and labelled diagram explain the working of HPLC. | | | | E) | Give applications and limitations of HPTLC. | | | | F) | Explain double beam densitometer used in HPTLC. Give any two advantages of HPTLC. | | | o = | O. | | ,
. = | | Q.5 | A) | statements: (any five) | 05 | | | | a) material can be used for verification of method validation | | | | | parameters. | | | | | i)Reference material ii) Certified reference material iii) LR grade | | | | | b) The next step after quality control is | | | | | i)quality management ii) quality assurance iii) quality development | | | | | c) The sum of mole fraction of solute and solvent is | | | | | i) 1 ii) 1.5 iii) 2.5 | | | | | d) is a method of expressing concentration in a solution on weight basis. | | | | | i) Normality ii) Molality iii) Molarity | | | | | e) Flushing method is used for sampling of | | | | | i) Solid ii) liquid iii) gases | | | | | f) is used for sampling of compact solid. | | | | | i) Auger sampler ii) Multiple tube sampler iii) Split tube thief | | | | | g) The ratio of weight of sample to total weight of bulk is i) Bulk size ii) Size:weight ratio iii) Bulk ratio | | | | | h) is used for sampling of flowing liquid. | | | | | i)Concentric tube thief ii) Geo-sampler iii) multiple tube sampler | | | Q.5 | B) | State whether true or false: (any five) | 05 | | STEP . | | a) In the titration of iron(II) with cerium(IV); iron(II) undergoes reduction. | | | | | b) Potassium permanganate acts as self indicator in redox titrations. | | | | | c) Nernst's distribution law is applicable in redox titrations. | | | | | d) pCa is defined as $log_{10}[Ca^{+2}]$ | | | | | e) Diphenyl amine is the first indicator to be used in redox titrations. | | | | | | | Page 2 of 3 | Q.5 C) | a)b)c)d)e) | (any five) (acetylene, phosphorescence toxic metals, mist, low, right AAS is used to detect products. The fuel used in a premix but The nebulizer converts the sa Delayed re-emission of absor | ect alter e, turbic t) like rner in F imple so | rnatives given in the bracket: dity coefficient, turbidance, Cu, Ni, Zn and Hg in food ES is | 05 | | | |---|--|--|---|---|----|--|--| | Q.5 C) | b) c) d) e) | (any five) (acetylene, phosphorescence toxic metals, mist, low, right AAS is used to detect products. The fuel used in a premix but The nebulizer converts the sa Delayed re-emission of absor | e, turbio
t)
like
rner in F
imple so | dity coefficient, turbidance, Cu, Ni, Zn and Hg in food ES is | 05 | | | | | b) c) d) e) | AAS is used to detect products. The fuel used in a premix but The nebulizer converts the satisfied Delayed re-emission of absorbatical products. | like
rner in F
imple so | ES is | | | | | | c)
d)
e) | The nebulizer converts the sa
Delayed re-emission of absor | imple so | | | | | | | d)
e) | The nebulizer converts the sa
Delayed re-emission of absor | imple so | | | | | | | e) | | bed radi | The nebulizer converts the sample solution into a | | | | | | ŕ | Phosphorimetric experiment | Delayed re-emission of absorbed radiation is called | | | | | | | | Phosphorimetric experiments are normally carried out at temperature. | | | | | | | | f) (| In the expression w.r.t. turbic | limetry, | S=Ktc, 'K' stands for . | | | | | | g) | _ _ | r is usua | lly, but not necessarily, placed | | | | | | h) | | | a function of concentration of | P | | | | Q.5 D) | | Match the columns: (any fi | ve) | | 05 | | | | | | Column A | | Column B | | | | | | a) | TBP solvent | (i) | Ion-pair formation | | | | | | b) | Multistage separation | (ii) | Easily extracted in organic solvent | | | | | Ble Still | c) | Hydrophobic functional groups chemically bonded silica | (iii) | Analytical column | | | | | | d) | Neutral chelate | (iv) | HPTLC | | | | | | e) | Complexes form clusters | (v) | Solid phase extraction | | | | | \$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | f) | HPLC | (vi) | pH _{1/2} | | | | | SECT! | g) | Densitometer | (vii) | Easily extracted in aqueous solvent | | | | | | | | (viii) | Countercurrent extraction | | | | | | SX. | ECILE COSE STEP | (ix) | Extraction of uranyl nitrate | | | | | | | ***** | ***** | | | | | 36355