QP Code : 12772

(21/2 Hours)

| Total Marks : 75

N.B.	:	(1)	All questions are compulsory with internal options.	
		(2)	Figures to the right indicate full marks.	
		(3)	Symbols have the usual meaning unless stated otherwise. Use of non-programmable calculators and log tables is allowed.	
		(4)	Use of non-programmable calculators and log tables to	
1.	(a)	Att	empt any one of the following:	
		i)	Show that for an electrostatic field, div $\overline{E} = \rho/\epsilon_0$ and curl $\overline{E} = 0$.	
			Examine whether the following is a possible electrostatic field:	
			$\overline{E} = k[xy\hat{x} + 2yz\hat{y} + 3zx\hat{z}]$ here k is a constant with appropriate units.	10
		115	Use Gauss' Law to find the electrostatic field outside and inside a	
		11)	uniformly charged sphere of charge density p and radius R. Hence	
			calcuate the electric potential in both the regions, taking the reference	
			point at infinity.	10
	(b)	At	tempt any one of the following:	
	(0)	i	An infinite plane carries a uniform surface charge density o. Find	
		.,	E. Hence find the E for points inside and outside a charged parallel	
			plate capacitor, making the appropriate assumptions.	5
		(11)	Find the electric field at a distance 's' from an infinitely long, straight	
			wire carrying a uniform linear charge density 'λ'. Hence calculate	
			the electric potential assuming $P(s_0, \theta_0, z_0)$ as the reference point.	5
2	(a)	At	tempt any one of the following:	
	(-)	i)	Obtain an expression for potential due to bound charges, for a	
			polarized dielectric in terms of σ_b and ρ_b .	10
		ii)	Using Siot-Savart's law, show that $\overline{\nabla} \cdot \overline{\mathbf{B}} = 0$. Also explain the physical	
			significane of the result.	10
	(b)	At	tempt any one of the following.	•
	(~)		i) Obtain Gauss's law for a polaized dielectric in both differential	
			and integral form.	5
			ii) For a very long solenoid consisting of 'n' closely wound turns per	5
			unit length on a cylinder of radius 'R' and carrying a steady current	
			our ent	

		'I', assume that $B_s = 0$ and $B_{\varnothing} = 0$. Calculate \overline{B} both inside and outside	
			5
3.	(a)	Attempt any one of the following:	
		(i) Explain why it was necessary to modify Ampere's law in its original	
			10
		(ii) Obtain the expression for energy stored in a magnetic field. What is	10
	(b)	the energy density? Attempt any one of the following:	
	(0)	(i) Show that in a linear medium $\vec{B} = \mu \vec{H} = \mu_0 (1 + \chi_n) \vec{H}$.	_
			5
		(ii) Give the physical interpretation of surface current density \overline{K}_b .	5
4	(a)	Attempt any one of the following:	
	(4)	(i) Derive the electromagnetic wave equation in vacuum, where there are	
		no free charges or currents. For a plane wave, show that the electric	
		field, magnetic field and the direction of propagation are mutually	
		perpendicular.	10
		(ii) State and prove Poynting's theorem and obtain its differential version.	10
	(b)		
		(i) For a certain medium $\varepsilon = 17.7 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ and $\mu = 4 \pi \times 10^{-7} \text{ N/A}^2$	
		Find the velocity of plane electromagnetic wave in the medium. Also	
		find the refractive index of the medium.(c=3 x 10 ⁸ m/s)	5
		(ii) Show that in case of plane monochromatic waves the contributions from electric and magnetic fields towards the electromagnetic energy density	
		are equal.	
5.	(a)	Attempt any one of the following:	5
		(i) Consider the xy plane to be a grounded, conducting plane Charges	
		and q_2 are need fixed at (x_1, y_1, z_1) and (x_2, y_2, z_1) respectively where 1	
		21 and 22 0. Locate the image charges and hence find V(x v z) for	
		points above the plane.	
		(ii) A hollow spherical shell carries charge density $\rho = k/r^2$ for $a \le r \le b$.	4
		Find \overline{E} in the regions $r < a \& a < r < b$	
		Trips:	4
-		[TURN OVER	

CM-Con. 2270-15.