Q.P. Code: 12863

(2½ Hours) [Total Marks: 75

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate full marks.

(3) Use of Logarithmic tables/Non-programmable calculator is allowed.

(4) Answers to the two sections must be written in two separate answer books and tied together.

Physical Constants:- $N = 6.022 \times 10^{23}$

$$K = 1.38 \times 10^{23} \text{ J/K}$$

$$\frac{2.303\,\mathrm{RT}}{\mathrm{E}} = 0.0592$$
 at 298 K

F = 96500 C

R = 8.314 J/mol/K

 $h = 6.625 \times 10^{-34} Js$

 $c = 3.0 \times 10^8 \,\text{m/s}$

SECTION - I

I. Attempt any three of the following.

- (A) By how much would the normal boiling point 353.1 K be raised on dissolving 1.2g of n-hexane (C₆H₁₄) in 100 g of benzene Ebullioscopic constant of benzene is 2.62 k kg mol⁻¹
- (B) With a neat labelled diagram, explain application of phase rule to water system.
- (C) (i) State and explain the Raoult's law.
 - (ii) Show graphically the elevation in boiling point of a solvent due to 3 addition of non volatile solute.
- (D) Derive Vant' Hoff's equation for osmotic pressure.
- (E) What do you understand by eutectic point? Explain the phase diagram of lead 5-silver system.
- (F) Describe the salient features of a triangular phae diagram for three component system.

2. Attempt any three of the following.

- (A) Calculate the ionic strength of the solution containing 0.01 mol.dm⁻³ Zn Cl₂ 5 and 0.2 mol.dm⁻³ of FeCl₃.
- (B) Derive an expression for the emf of an electrolyte concentration cell without transference reversible to anion.
- (C) Calculate the liquid junction potential of the following cell 5

$$\stackrel{\Theta}{\operatorname{Ag}}_{(s)}$$
, $\operatorname{AgCl}_{(s)}$ $\left| \stackrel{HCl}{\underset{a=0.01752}{\operatorname{HCl}}} \right| \stackrel{HCl}{\underset{a=0.09046}{\operatorname{HCl}}} \left| \operatorname{AgCl}_{(s)}, \operatorname{Ag}_{(s)} \right|^{\oplus}$

if the transport number of H+ is 0.83 at 298 K.

5

		cribe how the solubility product of a sparingly soluble salt call be determined	
	T 01.4	e any three merits and any two demerits of the glass electrode.	5
	(E) Stat	at is a salt bridge? Where is it used? What are its functions?	5
	(r) wh		4
3.	(A) State	true or false :-	4
	(i)	When two solutions have same osmotic pressure at a given temperature	
		they are said to be isotonic.	
	(ii)	CaCO, system is a typical example of a one component system.	3
	(iii)		
	(iv)		
	(4) P.III.	OR	4
		the blanks with correct alternative. Mathematical expression of Gibb's phase rule is (F= C-P+2,	
	(i)	F= C+P-2, F=C-P+1)	
	(ii)	- its (amuel to logg than	
	()	greater than)	
	(iii)	When a non volatile solute is dissolved in a solvent, vapour pressure of	
		the solvent (decreases, increases, remains same)	
	(iv)		
		true or false.	4
	(a)		
	(b)		
	(c)	In chemical cell, the emf is due to a chemical reaction occuring within	
		the cell.	
	(d)	$Pt, H_{2(g)} HCl AgCl_{(s)}, Ag$	
		is an example of a concentration cell.	
		OR	
	(b) Ma	tch the following:-	4
		(a) $CuSO_4$ (i) $108 \text{ m}^5 \gamma^5$	4
		(b) K_2SO_4 (ii) $4 m^2 y^2$	
		(c) $Na_3 PO_4$ (iii) $9 m^2 \gamma^4$	
		(d) $Al_2 (SO_4)_3$ (iv) $m^2 \gamma^2$	
		(v) $27 \text{ m}^4 \gamma^4$	
		(vi) $4 \text{ m}^3 \gamma^3$	

3

SECTION - II

4.	Answer any three of the following.	5
	(A) Explain the following terms giving one example for each	3
	(i) Proper rotation axis (ii) Mirror plane	5
	(B) Explain the point group assigned to water molecule.	
	(C) Explain (i) Importance of molecular symmetry	2 3
	(ii) Inversion centre	5
	(D) Define 'Point group'. Explain point group assigned to trans dichloro ethylene.	
	(E) Draw the moleculer orbital diagram for BeH, molecule. Explain its magnetic	5
	property.	_
	(F) What is Walsh correlation diagram? Explain its use in the determination of	5
	structure of H ₃ ⁺ ion	
5.	Answer any three of the following.	-
	(A) What are the oxoanions? How are they classified?	5
	(B) Give the hydrolysis reactions of Cr ³⁺ ions in aqueous medium.	5
	(C) Write Latimer equation? Explain its significance.	5
	(D) What is predominance diagram? Explain predominance diagram for (i) strongly	2
	basic anions (ii) weakly basic anions	_
	(E) Explain Acidic Basic and Amphiprotic solvents with suitable examples.	5
	(F) With respect to liquid N ₂ O ₄ as solvent answer the following:	5
	(i) Auto ionization reaction	
	(ii) Reactions with metals	
	(iii) Acid base reactions	
6	Answer the following:	4
	(A) Select and write the most appropriate answer.	
	(a) Doing nothing operation is same as	
	(i) centre of symmetry (ii) identity (iii) reflection	
	(b) In ammonia molecule the principal axis is axis.	
	(i) C_2 (ii) C_3 (iii) C_4	
	(c) Point group assigned to HCl is	
	(i) $D\infty h$ (ii) C_{2v} (iii) $C\infty v$	
	(d) Photo electron spectrum of water molecule shows bands	
	(i) 2 (ii) 3 (iii) 4	
	OR	

 (A) State whether the following statements are True or False. (p) Water is linear molecule. (q) Point group assigned to H₂ molecule is C_{2V} (r) Order of point group D_{3h} is 6. (s) On the basis of symmetry combact that the combact is the false. 	
(s) On the basis of symmetry symbol 't' denotes triply degenerate orbitals. (B) Select and write the most appropriate answer. (a) is non ionizing solvent	
(i) HF (ii) NH ₃ (iii) C ₆ H ₆ (b) In auto ionization of liquid NH ₃ , species not obtained is (i) NH ₄ (ii) NH ² (iii) N ⁴ (c) As the number of oxo groups increases basicity (i) increases (ii) decreases (iii) does not change.	
(B) State whether the following statements are TRUE or FALSE. (p) CCl ₄ is ionizing solvent	
(q) Liquid CH ₃ COOH exist as dimer. (r) Dilute solution of sodium metal in liquid NH ₃ is green in colour.	