VCD/ SYBSC- SEM IV - MATHEMATICS I- 75MARKS- 21/2HRS

2)Let $S\neq \phi$, open subset of R^2 , $(a,b)\in S$ be stationary point of f. Suppose f(x,y) possesses continuous second order partial derivative in some neighborhood of(a,b).Let $A=f_{xx}(a,b)$, $B=f_{xy}(a,b)$, $C=f_{yy}(a,b)$. Let $\Delta=AC-B^2$.prove that i) if A>0, $\Delta>0$ then f has local minimum at (a,b) ii) if A<0, $\Delta>0$ then f has local maximum at (a,b)

(b) Attempt any two. [each 6 Mks]

- 1) Find the total derivative of f at (1,1,1) in Jacobian form and also in linear transformation form where $f: R^3 \rightarrow R^3$ as f(x, y, z) = (x+y, y+z, z+x)
- 2) Define the Differentiability of a vector valued function $f: R^n \to R^m$ at $a \in R^n$. Let $f: R^n \to R^m$ be differentiable at $a \in R^n$ then prove that αf is differentiable at $a, \alpha \in R$ and $D(\alpha f)$ (a) $= \alpha Df(a)$
- 3) Find the maximum possible rate of change $f(x, y, z) = I_n(x+y+z)$ at (1, 2,3) also find the direction in which such a maximum rate of change occurs.

O.4. Attempt any three. [each 5 Mks]

1) Find
$$f_x$$
, f_y at (0, 0) if exists for $f: \mathbb{R}^2 \to \mathbb{R}$ is defined as $f(x, y) = x^3/(x^2 + y^2)$ if $(x, y) \neq (0, 0)$
=0 if $(x, y) = (0, 0)$

- 2) For following function f, find the real $\theta \in (0, 1)$ if exists satisfying $f(b)-f(a) = \nabla f(a+(b-a)\theta)$. (b-a) where $f(x, y) = x^2 + x + y$, a=(0,0), b=(1,-1)
- 3) Using chain rule find the total derivative of $f(x, y, z) = xy^2 + yz^2 + zx^2$, $x(t) = e^t$, $y(t) = \sin t$, $z(t) = \cos t$.
- 4) Find directional derivative of f at a in direction of u $f(x, y, z) = z^2 x^2 y^2$, a = (1, 0, 1), u = (4, 3, 0)
- 5) Let $f:R^2 \to R^3$, $g:R^3 \to R^2$ as $f(x, y) = (3x^3 + 4xy, y^2 + 3x, x^2 + y^2) = (f_1, f_2, f_3)$, $g(u, v, w) = (uvw, u^2 + v^2 + w^2) = (g_1, g_2)$ Find J(f(x, y)), J(f(g(a))), a = (1, -1, -1)
 - 6) Locate all critical points of $f(x, y) = x^3 6xy + 3y^2 2yx + 4$

XXXXXXXXXXX

VCD/ SYBSC- SEM IV - MATHEMATICS I- 75MARKS- 21/2HRS

NOTE: 1) For Q.1, Q.2 and Q.3 attempt any one subquestion (each 8 marks) from part (a), and any two subquestions (each 6 marks) from part (b). For Q.4, attempt any three. (each 5 marks)

Q.1. (a) Attempt any one. [each 8Mks]

- 1) Define a continuity of a vector valued function $f: S \to R^m$, $S \neq \varphi$ subset of R^n . Prove that for nonempty subset S of R^n , $f,g: S \to R^m$ continuous at a \in S then f-g is continuous at a \in S.
- 2) Prove that sequence $w_n = (s_n, t_n)$ in R^2 converges to a limit $w = (s, t) \in R^2$ iff $(S_n) \to s$ & $(t_n) \to t$

(b) Attempt any two. [each 6Mks]

1) Define norm of x where $x=(x_1,x_2,...,x_n)\in R^n$ and prove that $\|x+y\|\leq \|x\|+\|y\|$ $x,y\in R^n$

2)Show that $S = \{(x,y) \in \mathbb{R}^2 / 3x + 4y < 12\}$ is an open set.

3) Define f: $R^2 \to R$ defined by $f(x,y) = x \sin \underline{1} + y \cos \underline{1}$ for $(x,y) \neq (0,0)$

=0. otherwise Find Lim f(x, y) if exists $(x,y) \rightarrow (0,0)$

Q.2. (a) Attempt any one. [each 8Mks]

1)State and prove Euler's theorem for function of two variable.

2)Define a Differentiability of a scalar valued function $f: S \to R, S \neq \phi$ subset of R^n at point $a \in S$. Prove that for nonempty subset S of R^n , $f: S \to R$ be differentiable at $a \in S$ then $\partial f(a) / \partial x_i$ exists for i=1,2,...n

(b) Attempt any two. [each 6Mks]

1) Evaluate total derivative of f using definition at the mentioned point $f(x, y, z) = x^2 + 2y^2 + 3z$, a = (1, -1, 0)

2) Let $f: \mathbb{R}^2 \to \mathbb{R}$ as $f(x, y) = 3\sin x + y\cos x$. Find $f_{x,f} f_{y,f} f_{xx,f} f_{yx,f} f_{xy,f} f_{xxy,f} f_{xxy,f} f_{xy,f} f_{xy$

3)Let $f: R^2 \to R$ be non constant differentiable function, $k \in R$, f(x, y) = k describes the curve C having tangent at each of ots points then prove that i)gradient vector ∇f is normal to Cii) the directional derivative of f is zero along C

Q.3. (a) Attempt any one. [each 8Mks]

1 11

1)Let $S\neq \phi$, open subset of R^n , $a\in S\& f:S\to R$ be a scalar field. Let f be differentiable at a. If f has a local maximum or local minimum at a then prove that $\nabla f(a) = 0$.

1 1 1