54BSC Mouths Date 713115

5 MARKS - 2.5HRS -160 S II- SYBSC

Note:: 1) All questions are compulsory.

- 2) For Q.1, Q.2, Q.3, attempt any one subquestion (each 8 mks) from part (a), and any three subquestions (each 4 mks) from part(b)
- 3) For Q.4 Attempt any three.(each 5 mks)
- Q.1 (a) Attempt any one [Each 8]
 - 1) Verify Rank-Nulity Theorem for $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x + y, z)
 - 2) Let V, U be vector spaces over \mathbb{R} . If $T: V \to U$ is a linear transformation then prove ii)T(-x) = -T(x)i) T(0) = 0that

Also Define a Linear Transformation and Check whether following is a linear transformation or not.

$$T: \mathbb{R}^2 \to \mathbb{R}$$
 defined by $T(x, y) = 2x + y$

- [Each 4] Q.1 (b) Attempt any three.
 - 1) Let V, U be a vector spaces over \mathbb{R} and $T: U \to V$ be a linear transformation then define Image of T (Img T) and prove that Img T is a subspace of V.
 - 2) Define a matrix associated with linear transformation and find matrix of linear transformation for following linear transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 as $T(x, y) = (x + y, 2y, x - y)$ with respect to natural basis $\{(1,0,0), (0,1,0), (0,0,1)\}$ of \mathbb{R}^2

3) Let V, V' be m-dimensional and n-dimensional vector spaces over $\mathbb R$ and

$$\mathcal{B} = \{e_1, e_2, \dots, e_m\} \& \mathcal{B}' = \{e_1', e_2', \dots, e_n'\}$$
 be ordered bases of V, V' respectively.

Prove that if $T_1: V \to V'T_2: V \to V'$ are linear transformation Then

$$m(T_1 + T_2) = m(T_1) + m(T_2)$$

4) Define row rank, column rank and rank of a matrix A and find rank of

$$A = \begin{bmatrix} 4 & 3 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{bmatrix}$$

Q.2 (a) Attempt any one

[Each 8]

1) Define the determinant of a matrix of order n and derive the formula for

determinant of

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

- 2) Prove that if A is matrix of order n then det $A = \det(A^T)$ where $A^T = \text{transpose of}$ A.
- Q.2 (b) Attempt any three.

[Each 4]

1) Define Determinant of a matrix using Laplace Expansion and use Laplace Expansion by 2nd row to find determinat of following matrix

$$A = \begin{bmatrix} 3 & 2 & 5 \\ 0 & 3 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$

2) Define Vandermonde determinant and solve

$$A = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix}$$

3) Define linearly independant and linearly dependant vectors in \mathbb{R}^n .

Check whether following vectors are linearly independant or linearly dependant

4) Find inverse of a matrix using adjoint method

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

Q.3 (a) Attempt any one

[Each 8]

1) Find eigen values and eigen vectors

$$A = \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix}$$

2) Verify Cayley Hamilton Theorem and hence find A^{-1} if exist.

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

Q.3 (b) Attempt any three.

[Each 4]

1) Prove that Zero is eigen value of a matrix iff matrix is singular.

- 2) Define an eigen value of a matrix and prove that the eigen values of a matrix and its transpose are same.
- 3) Define similar matrix and prove that if $A \otimes P$ are $n \times n$ matrices and P is nonsingular then $A \otimes P^{-1}AP$ have same eigen values.
- 4) Prove that the eigen values of a diagonal matrix are diagonal elements.
- Q.4 (a) Attempt any three [Each 5]
 - 1) Let V be a finite dimensional vector space over \mathbb{R} and $T:V\to V$ be a linear transformation Then prove that T is invertible iff T is one-one.
 - 2) Let U, V, W be vector spaces over \mathbb{R} and $T: U \to V, S: V \to W$ be a linear transformation. Then prove that the composition map $S \circ T: U \to W$ is also a linear transformation.
 - 3) Find volume of parallelepiped bounded by three vectors V_1, V_2, V_3

$$V_1 = <2,3,5>, V_2 = <-2,1,-6>, V_3 = <-1,7,-1>$$

4) Find area of parallelogram formed by edges V_1 , V_2 where V_1 , V_2

$$V_1 = 2i - 3j, V_2 = 3i + 8j$$

- 5) Prove that eigen vectors corresponding to distinct eigen values are linearly independent.
- 6) Define the following term
- i) Eigen value of a matrix ii) Eigen vector of a matrix
- iii) Diagonalisable matrix iv) Similar matrices
- v) Characteristic polynomial of a matrix