VCD S.Y. B.Sc. PHYSICS-III IV-SEMESTER 2014-15 75 MARKS 2.30 HRS.

Note: i) All the questions are compulsory.

- ii) Figures to the right indicate full marks.
- iii) Use of non programmable calculator is allowed.

Q.1 Attempt the following:-

- A) Attempt any 1:- 8M]
 - a) Derive schrodinger's time independent equation.
 - b) Derive schrodinger's time dependent equation.
- B) Attempt any 1:- 7M]
 - a) State the conditions of a 'well behaved' wave & show that $|\psi|^2 \neq |\psi 1|^2 + |\psi 2|^2$.
 - b) If $\psi_1(x)$ and $\psi_2(x)$ are the solutions of STIE for different energy eigen values $E_1 \& E_2$ then $\int_{-\infty}^{\infty} \psi_1^* \psi_2 dx = 0$.
- C) Attempt any 1:- 5M]
 - a) An eigen function of the operator d^2/dx^2 is $\psi = e^{2x}$ find the corresponding eigen value.
 - b) Find the expectation value of x for a wave function, $\psi(x) = \sqrt{2/l} \sin(\pi x/l)$, 0 < x < 1.

Q.2 Attempt the following:-

A) Attempt any 1:- 8M]

- a) What are Galilean transformation? Derive Galilean transformation equations for two inertial frames, state and prove Galilean invariance.
- b) Describe the experiment of Fizeau convection coefficient with the help of diagram.

B) Attempt any 1:- 7M]

- a) Explain stellar-aberration and Lorentz fizerald contraction in short.
- b) Why the apparatus of Michelson Morley experiment was rotated through 90°? Why did they repeat the experiment during day & night and during all season of the year?

C) Attempt any 1:- 5M] a) Show that the circle $x^2 + y^2 = a^2$ in a frame F appears to be an ellipse in frame

F', which is moving with velocity v relative to F.

b) An event occurs at x=5m and t= 1x10⁻⁴sec.in a reference frame F. calculate the co-ordinate of the event in a reference frame F' which is moving with velocity 2.7x10⁸ m/s with respect to the frame F along a common XX' axis using Galilean transformation.

Q.3 Attempt the following:-

A) Attempt any 1:- 8M]

- a) Explain what is meant by one dimensional infinite rectangular potential well. Why is it also called a one dimensional box with rigid walls?
- b) What is meant by zero potential? Discuss classically & quantum mechanically the motion of a particle for zero potential. Find the expectation value of momentum and comment on it.

B) Attempt any 1:- 7M]

- a) What is meant by finite square well potential? Set up STIE for a particle in one dimensional finite square well potential.
- b) What is step potential? Discuss classical behavior of the motion of a particle when $E_0 > V_0 \& E_0 < V_0$.

C) Attempt any 1:- 5M]

- a) Write down Schrodinger's equation for a particle in a infinite square well potential and show that its energy is quantized.
- b) Show that expectation of momentum of a particle in a one dimensional box is zero. Comment on the statement.

Q.4 Attempt any 3: - 15M]

- a) Normalize the following wave function. $\Psi_n = \sin{(n\pi x/l)}$; $0 \le x \le l$ n is an integer.
- b) What is meant by normalization of wave function?.
- c) A 2.0 meter long rod is moving along its length with velocity 0.8C. calculate its length as it appears to an observer on the earth.
- d) Calculate the percentage contraction of a rod moving with velocity 0.6 times the velocity of light in a direction at 45° to its own length.
- e) Derive the Schrodinger's equation for a free particle and find the expectation value of momentum.
- f) An α particle having energy 10 MeV approaches a potential barrier of height 50 MeV and width 10^{-15} m. determine the transmission coefficient ($m_{\alpha} = 6.68 \times 10^{-27} \text{kg}$).